Separation of Variables Spherical Coordinates

cooev769
Messages
114
Reaction score
0

Homework Statement



So I'm doing a question from one of my past exams as attached, there are no copy right issues with this document that I know of and have asked my lecturer who wrote the exam and he said I am welcome to upload it. The question is 1)b)iv), my attempt is attached. I end up with a 2l+1 where there should just be 1, can anybody tell me where I went wrong?

Homework Equations



Relevant equations are attached in the past exam

The Attempt at a Solution



My scan is too large to attach so please use the url provided. Thanks

http://tinypic.com/r/4ki9w5/8
 

Attachments

Physics news on Phys.org
Solved I was adding the two instead of subtracting them. I can do electrodynamics but I can't do simple addition. Time to go and cuff my primary school teacher.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top