Sequence Convergence: Determine if an= (13(4n)+11)/(10(5n))

nvalia
Messages
4
Reaction score
0

Homework Statement



Determine if the sequence an converges.

an = (13(4n)+11)/(10(5n))

Homework Equations



N/A

The Attempt at a Solution



\lim_{n \to \infty} (\frac{(3(4^n))+11}{10(5^n)})
= 1/10 \lim_{n \to \infty} (\frac{(3(4^n))+11}{5^n})
= 1/10 \lim_{n \to \infty} (\frac{(3(4^n)}{5^{n}}) + \lim_{n \to \infty} (\frac{11}{5^n})

I feel like I am missing something very basic. Thank you for your help!
 
Last edited:
Physics news on Phys.org
nvalia said:

Homework Statement



Determine if the sequence an converges.

an = (13(4n)+11)/(10(5n))

Homework Equations



N/A

The Attempt at a Solution



\lim_{n \to \infty} (\frac{(3(4^n))+11}{10(5^n)})
= 1/10 \lim_{n \to \infty} (\frac{(3(4^n))+11}{5^n})
= 1/10 \lim_{n \to \infty} (\frac{52^{n}}{5^{n}}) + \lim_{n \to \infty} (\frac{11}{5^n})

I feel like I am missing something very basic. Thank you for your help!
how did you get your last line? where did 52 come from?

what is \lim_{n \to \infty} (\frac{4}{5})^n?
 
Oops! That was a typo -- fixed. Sorry about that.

And, if I write out the sequence, I would have to say the limit of (4/5)^n = 0.
Am I allowed to split the limit like I did, and, if so, are the limits separately 0 and 0, so that the final answer is "converges to zero"?
 
it depends what has been proved, but where the limie exists and is finite for both f & g, generally it is fine to assume
\lim_{n \to \infty} (f(n) +g(n)) = \lim_{n \to \infty} f(n) +\lim_{n \to \infty}g(n)[/

\lim_{n \to \infty} (\frac{(3(4^n))+11}{10(5^n)}) = \lim_{n \to \infty} \frac{3}{10}(\frac{4}{5})^n + \lim_{n \to \infty} \frac{11}{10}(\frac{1}{5})^n
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top