azatkgz
- 182
- 0
Homework Statement
Determine whether the series converges and diverges.
\sum_{n=3}^{\infty}\ln \left(\frac{\cosh \frac{\pi}{n}}{\cos \frac{\pi}{n}}\right)
The Attempt at a Solution
\sum_{n=3}^{\infty}\ln \left(\frac{1+\frac{\pi^2}{2n^2}+O(\frac{1}{n^4})}{1-\frac{\pi^2}{2n^2}+O(\frac{1}{n^4})}\right)
=\sum_{n=3}^{\infty}\ln \left(\left(1+\frac{\pi^2}{2n^2}+O(\frac{1}{n^4})\right)\left(1+\frac{\pi^2}{2n^2}+O(\frac{1}{n^4})\right)\right)=\sum_{n=3}^{\infty}\ln \left(1+\frac{\pi^2}{n^2}+O(\frac{1}{n^4})\right)
=\sum_{n=3}^{\infty}\left(\frac{\pi^2}{n^2}+O(\frac{1}{n^4})\right)
series converges