Set of vector which are solution to 2 homogeneous systems

Philip Wong
Messages
95
Reaction score
0
hi guys,
I have two homogeneous systems S1 and S2. The solution for
NS(S1) = {[-2,1,0], [-1,0,1]},
NS(S2) = {[-2,1,0], [-3,0,1]}.

I know that in a system if u and v are vectors, the sum of u+v is also a solution in the homogeneous system. i.e. S1=span{[-2,1,0], [-1,0,1]} then [-2,1,0] + [-1,0,1] is also a solution in that system (close under addition if I am correct).

But what about if I want to find the set of vectors which are solution to both S1 and S2? Do I use the same methods to it?
i.e. Solution = span {[-2,1,0]+[-2,1,0] ; [-1,0,1]+[-3,0,1]}

I think this is wrong, but I'm not sure how
 
Physics news on Phys.org
You say you want "the set of vectors which are solution to both S1 and S2". That is the intersection of the two sets, vectors that are in both. It is NOT the "direct sum" which is what you have. What you have is the set of vectors that solve either S1 or S2, not both.

Actually, for this problem, the solution is simple: notice that [-2, 1, 0] is in both sets. And the other two vectors, [-1, 0, 1] and [-3, 0, 1] are not multiples of each other.
 
HallsofIvy said:
You say you want "the set of vectors which are solution to both S1 and S2". That is the intersection of the two sets, vectors that are in both. It is NOT the "direct sum" which is what you have. What you have is the set of vectors that solve either S1 or S2, not both.

Actually, for this problem, the solution is simple: notice that [-2, 1, 0] is in both sets. And the other two vectors, [-1, 0, 1] and [-3, 0, 1] are not multiples of each other.

Oh! So I would be right if I were to solve for S1 OR S2 only?

Arr! I think I might be hooking onto something here, so it should be span{[-2, 1, 0]}. This is where both systems intersects at this line. Right?
 
Last edited:
Yes! That is exactly right.
 
thanks!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Back
Top