Set Theory Proof: Proving Identity (A U B) ∩ (B U C) ∩ (C U A)

hmph
Messages
6
Reaction score
0
Hi, I have been trying for a very long time to prove the following set theory identity

(A union B) intersect (B union C) intersect (C union A) = (A intersect B) union (B intersect C) union (C intersect A).

I thought that I could simplify (A U B) intersect (B U C) intersect (C U A)
as [B U (A intersect C) ]intersect (C U A), but venn diagrams show that this is not correct.

Thanks
 
Physics news on Phys.org
Do you know how to distribute union over intersection and vice versa?
(AuB)^(BuC) = (A^(BuC))u(B^(BuC))
Since B^(BuC) = B you can simplify that a little.
Just keep applying those rules and the result should drop out.
If you get stuck, post your working so far.
 
Thank you, it worked. I probably did it in a more convoluted manner than required, but I was able to do it in around 12 lines.

I didn't realize that you could distribute like that at first.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top