Ted123
- 428
- 0
Homework Statement
I've got to show \sum_{n=0}^{\infty} \frac{(a)_n(-1)_n}{(c)_n n!} = \frac{c-a}{c}
where
\displaystyle (a)_n = \frac{\Gamma(a+n)}{\Gamma(a)} = a(a+1)...(a+n-1)
is the shifted factorial (Pochhammer symbol).
The Attempt at a Solution
I've been informed that (-1)_n = 0\;\;\;\;\;\;\forall\;\;n\geq 2
So the sum has only 2 terms for n=0 and n=1, but what do e.g. (-1)_0\,,\,(-1)_1\,,\,(a)_0\,,\,(a)_1 equal?