Shifted Factorial Homework: Showing \sum_{n=0}^{\infty}

  • Thread starter Thread starter Ted123
  • Start date Start date
  • Tags Tags
    Factorial
Ted123
Messages
428
Reaction score
0

Homework Statement



I've got to show \sum_{n=0}^{\infty} \frac{(a)_n(-1)_n}{(c)_n n!} = \frac{c-a}{c}
where
\displaystyle (a)_n = \frac{\Gamma(a+n)}{\Gamma(a)} = a(a+1)...(a+n-1)
is the shifted factorial (Pochhammer symbol).

The Attempt at a Solution



I've been informed that (-1)_n = 0\;\;\;\;\;\;\forall\;\;n\geq 2
So the sum has only 2 terms for n=0 and n=1, but what do e.g. (-1)_0\,,\,(-1)_1\,,\,(a)_0\,,\,(a)_1 equal?
 
Physics news on Phys.org
Hi Ted123! :smile:

look at the definition of (a)n

(a)0 obviously = 1 for all a (including (-1)0 = 1),

and (a)1 = … ? :wink:
 
tiny-tim said:
Hi Ted123! :smile:

look at the definition of (a)n

(a)0 obviously = 1 for all a (including (-1)0 = 1),

and (a)1 = … ? :wink:

So would (a)1 = a, and (-1)1 = -1 ?

So the 2 terms of the sum give 1 - \frac{a}{c} = \frac{c-a}{c}
Incidentally would (a)2 = a(a+1), (a)3 = a(a+1)(a+2) etc.?
 
Last edited:
yes yes yes yes and yes :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top