SHO in 2D - ground state energy

nhanle
Messages
10
Reaction score
0

Homework Statement


A two-dimensional harmonic oscillator is described by a potential of the form
V(x,y) = 1/2 m \omega^{2}(x^{2}+y^{2} + \alpha (x-y)^{2}
where \alpha is a positive constant.

Homework Equations


Find the ground-state energy of the oscillator

The Attempt at a Solution


I have tried to plug in the energy of SHO for each dimension x,y; yielding E = h_bar \omega(nx+1/2) + h_bar \omega(ny+1/2)
which method should I use to solve the third term i.e. \alpha (x-y)^{2}?
 
Physics news on Phys.org
You can only use E=\hbar\omega(n+1/2) if the Hamiltonian is of the form

\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2} m\omega^2\hat{x}^2

In this problem, the xy cross term messes things up, so you can't just look at it as two harmonic oscillators with the same frequency. You want to find a change of coordinates that will get rid of the cross term.
 
Thank you, after your suggestion

here is my attempt

x' = x + y
y' = x - y

So the Hamiltonian becomes

\hat{H}= \frac{\hat{p'^2}}{2m} + m\omega^2( \frac{1}{2} (\hat{x'^2}) + \frac{(1+ 2\alpha)}{2}(\hat{y'^2}))

where \hat{p'}^2 = (\hat{p_{x'}})^2 + (\hat{p_{y'}})^2

Question:
- Is it similar to the 2D SHO with the perturbed term \hat{H^{1}}} = \alpha\:\hat{y'}^2?
 
Last edited:
Shouldn't there be a factor of sqrt(2) in your coordinate transformation?

You don't need to treat it as a perturbation. Your Hamiltonian is now that of two harmonic oscillators of different frequencies:

\hat{H}= \left[\frac{\hat{p}'_x^2}{2m} + \frac{1}{2} m\omega^2 \hat{x}'^2\right] + \left[\frac{\hat{p}'_y^2}{2m} + \frac{1}{2} m\omega'^2 \hat{y}'^2\right]

where \omega'^2 = \omega^2(1+2\alpha).
 
wow, thank you so much.

Just to extend this arguments further. If the question was about the eigenstates of the modified Hamiltonian
\hat{H} = \frac{\hat{p}^2}{2m} + m\omega^2 ( x^2 + y^2 + \alpha (y-x)^2 + z^2)

, can I assume:

1) the ground state |n,l,m> has its symmetry skewed in the direction of (x-y)

2) the n =2 state has mixing between 211 and 21-1 that split the energy

Is it correct assumption? Just want to know so that I won't get lost when trying to do the calculation
 
nhanle said:
wow, thank you so much.

Just to extend this arguments further. If the question was about the eigenstates of the modified Hamiltonian
\hat{H} = \frac{\hat{p}^2}{2m} + m\omega^2 ( x^2 + y^2 + \alpha (y-x)^2 + z^2)

, can I assume:

1) the ground state |n,l,m> has its symmetry skewed in the direction of (x-y)
Yes, the spherical symmetry is broken by the (x-y) term.

Did you mean |nx,ny,nz>? Or did you solve the 3D harmonic oscillator, with the non-spherically symmetric potential, in spherical coordinates?
2) the n =2 state has mixing between 211 and 21-1 that split the energy

Is it correct assumption? Just want to know so that I won't get lost when trying to do the calculation
I don't know.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top