Shooting method for non-linear equation

sigh1342
Messages
30
Reaction score
0
shooting method for non-linear equation(urgent)

Homework Statement


for shooting method , in non-linear equation, we're find
$$t_{k}=t_{k-1}-\frac{[y(b,t_{k-1})-β](t_{k-1}-t_{k-2})}{y(b,t_{k-1})-y(b,t_{k-2})}$$
but how can we find the $$y(b,t_{k})$$ ?
I am suppose to use Euler method for it , but I'm confused,
for example , the question is $$y''=-(y')^2-y+lnx , 1≤x≤2 , y(1)=0, y(2)=ln2$$
suppose $$t_{0}=3, y(2,t_{0})=2.775, t_{1}=0.7, y(2,t_{1})=0.5775 $$we can find $$t_{2}=0.72105$$ then how can we find $$y(2,t_{2})$$ ?with Euler method , with h=0.5,
and I also want to know if the question didn't give what the $$y(b,t_{0})$$ , and $$y(b,t_{1})$$ is , how can I find them in the case , I know what $$t_{0} $$ and $$t_{1}$$ is , sorry for the poor
English but the way.

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
it's ok now , I got it , no need to answer this post , thank you lol
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top