kmm
- 188
- 15
In finding solutions to the time independent Schrodinger equation we have to normalize \psi to find the constant A. So we get \int_{0}^{a} |A|^{2} sin^{2}(kx) dx = |A|^2 \frac{a}{2}=1
For A we then get |A|^2 = \frac{2}{a}. Griffiths says that this only determines the magnitude of A but it's simplest to pick the positive real root. I know how to work with complex numbers generally but I'm a little confused as to what the imaginary root would be anyway. It looks to me like A= \pm \sqrt{ \frac{2}{a} }. Since we aren't square rooting a negative I don't see where the i comes in. Also, I know the magnitude of a complex number is real, so are we saying that A itself could be complex? I don't want to make any assumptions about this. Thanks!
For A we then get |A|^2 = \frac{2}{a}. Griffiths says that this only determines the magnitude of A but it's simplest to pick the positive real root. I know how to work with complex numbers generally but I'm a little confused as to what the imaginary root would be anyway. It looks to me like A= \pm \sqrt{ \frac{2}{a} }. Since we aren't square rooting a negative I don't see where the i comes in. Also, I know the magnitude of a complex number is real, so are we saying that A itself could be complex? I don't want to make any assumptions about this. Thanks!