Show isomorphism between two groups

playa007
Messages
25
Reaction score
0

Homework Statement


Suppose G is a non-abelian group of order 12 in which there are exactly two
elements of order 6 and exactly 7 elements of order 2. Show that G is isomorphic to the
dihedral group D12.


Homework Equations





The Attempt at a Solution


My attempt (and what is listed in the official solutions) was to first consider the cyclic group generated by an element of order 6 in group G. Thus, this cyclic group has order 6. Consider the elements in G \ <x> (complement of G and <x>); this subgroup has index 2(but the problem here its not even a subgroup since it has no identity element); so all the elements of G \ <x> has order 2(deduced from the hypothesis) and is a normal subgroup so by definition of normal subgroups, yxy^-1 = x^-1 is satisfied and G can be written as {x^6 = 1 , y^2 = 1 such that yxy^-1 = x^-1} which is precisely the same group structure as D12 => isomorphic.

I'm certain that there is a crucial flaw here and a correct proof or a way to fix the existing proof is very much appreciated.
 
Physics news on Phys.org
Yes that is a crucial flaw. And the solution doesn't seem to use the fact that G is nonabelian or that there are 7 elements of order 2 in G. These are things that you'd probably want to take advantage of!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top