Show that ∑1/(log n)^(log n) converges

  • Thread starter Thread starter Jamin2112
  • Start date Start date
Jamin2112
Messages
973
Reaction score
12

Homework Statement



Express (log n)log n as a power of n, and use the result to show that ∑1/(log n)log n converges.

Homework Equations



blah blah

The Attempt at a Solution



np(n) = (log n)log n
----> log[ np(n) ] = log[ (log n)log n ]
----> p(n) (log n) = (log n) log(log n)
----> p(n) = log(log n)

----> ∑1/(log n)(log n) = ∑ 1/nlog(log n)np(n) = (log n)log n
----> log[ np(n) ] = log[ (log n)log n ]
----> p(n) (log n) = (log n) log(log n)
----> p(n) = log(log n)

----> ∑1/(log n)(log n) = ∑ 1/nlog(log n)


... Now what? I can't think of any comparison test or anything for un = 1/nlog(log n)
 
Physics news on Phys.org
Try taking n greater than e raised to the power e.
 
ns2675 said:
Try taking n greater than e raised to the power e.

Huh? Explain a tad bit more.
 
The series with terms 1/n^p converges whenever p is greater than one. When n is greater than e raised to the power e, log (log n) is greater than 1. There are only finitely many terms of your sequence for which n is less than e raised to the power e; apply the comparison test accordingly.
 
ns2675 said:
The series with terms 1/n^p converges whenever p is greater than one. When n is greater than e raised to the power e, log (log n) is greater than 1. There are only finitely many terms of your sequence for which n is less than e raised to the power e; apply the comparison test accordingly.

Ah, I see!

n > ee ---> log(n) > log(ee) --> log(n) > e log(e) ---> log(n) > e ---> log(log(n)) > log(e) ----> log(log(n)) > 1.

Let 1 < p < log(log(n)). Then 1/nlog(log(n)) < 1/np whenever n > ee.

Because ∑1/np converges for all p > 1,

∑1/nlog(log(n) converges as well (Theorem 19.2.II)
 
The only problem is that I don't think we've learned ∑1/np converges for all p > 1. I can't be spouting off stuff willy-nilly.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top