Show that a matrix is a Lorentz transformation

fineTuner
Messages
17
Reaction score
0

Homework Statement


Given the matrix
$$ \Omega = \begin{pmatrix}
0 & -\psi & 0 & 0 \\
-\psi & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
show that ## e^{\Omega}## is a Lorentz transformation along the x-axis with ## \beta = tanh(\psi)##

Homework Equations


During the lesson we derived from the standard Lorentz transformation matrix the following matrix, where ##\psi## is the rapidity:

$$ \Lambda = \begin{pmatrix}
cosh(\psi) & -sinh(\psi) & 0 & 0 \\
-sinh(\psi) & cosh(\psi) & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} $$

Other equations:
##cosh(\psi)=\gamma##
##sinh(\psi)=\gamma \beta##

The Attempt at a Solution


[/B]
From ## \beta = tanh(\psi)##:
## \psi=arctg(\beta) = \ln\sqrt{\frac{1+\beta}{1-\beta}} ##
## e^{-\psi} = \sqrt{\frac{1-\beta}{1+\beta}}##
I think i have to show that the two matrices (##\Lambda## and ##e^{-\Omega}##) are the same, but i can't understand why there are zeros on the diagonal. For the two first zeros on the diagonal ##cosh(\psi)=0##, so ##\psi = \frac \pi 2##.
I think there's an error somewhere, because with the previous formulas it turns out that ##\beta = 1## and ##v=c##.

To be honest, i can't find the right way to solve the problem, maybe it's just algebra? Can you please give me a hint? Thank you!
 
Physics news on Phys.org
What is the definition of ##e^{\Omega}##?

Can you calculate ##\Omega^n##?
 
##\Omega^n## can be obtained multiplying the matrix n times. I underestimated the definition of ##e^{\Omega}##, i guess i can't obtain it taking the exponential of each element... now I'm reading the definition on wikipedia.
 
fineTuner said:
##\Omega^n## can be obtained multiplying the matrix n times. I underestimated the definition of ##e^{\Omega}##, i guess i can't obtain it taking the exponential of each element... now I'm reading the definition on wikipedia.
The exponential of a matrix is defined as in quantum mechanics, through its Taylor expansion (here around ##\psi=0##).
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top