Show that air drag varies quadratically with speed

monkeyboy590
Messages
2
Reaction score
0

Homework Statement



A gun is fired straight up. Assuming that the air drag on the bullet varies quadratically with speed. Show that speed varies with height according to the equations

v^2 = Ae^(-2kx) - g/k (upward motion)
V^2 = g/k - Be^(2kx) (downward motion)

in which A and B are constants of integration, g is the acceleration of gravity, k=cm, where c is the drag constant and m is the mass of the bullet. (Note: x is measured positive upward, and the gravitational force is assumed to be constant.)

Homework Equations



m dv/dt = mg - cv^2 = mg(1 - cv^2/mg)
.'. dv/dt = g(1 - v^2/v(sub t)^2) where v(sub t) is the terminal speed, sqrt(mg/c)

dv/dt = dv/dx dx/dt = 1/2 dv^2/dx
So now we can write the equation as:

dv^2/dx = 2g(1 - v^2/v(sub t)^2)

The Attempt at a Solution



I have gotten as far as to say:

For downward motion:
v^2 = g/k(1exp^[2kx]) + v(naught)^2.exp^[2kx]​
Likewise for upward, we get:
v^2 = g/k(1-exp^[-2kx]) + v(naught)^2.exp^[-2kx]​

I just don't know how to relate these to the original equation to show that speed varies with height.
 
Physics news on Phys.org
You already know that

a=\frac{dv}{dt}=g \large(1-\frac{v^{2}}{v^{2}_{T}} \large)

Now it is also true that

a=\frac{dv}{dt}=\frac{dv}{dx}\frac{dx}{dt}=v\frac{dv}{dx}

So ...
 
To be completely honest, I'm not sure where you're going with that.

I'm not sure how to show specifically that the speed varies with the height. What variable would I use to represent speed, and how do I incorporate the original equations that were given in the problem into this solution?

Thank you so much for your help!
 
Look at the equations I gave you. If the right sides are equal to the same thing, the acceleration, then the right sides are equal to each other. Then you get a differential equation that you can solve to find v(x). Isn't that what you want?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top