Show that this function is differentiable

Oats
Messages
11
Reaction score
1

Homework Statement


Exercise 4.2.4.
[/B]
Let ##I \subseteq \mathbb{R}## be an open interval, let ##c \in I##, and let ##f:I \rightarrow \mathbb{R}##. Suppose that ##|f(x)| \leq (x - c)^2## for all ##x \in I##. Prove that ##f## is differentiable at ##c## and ##f'(c) = 0##.


2. The attempt at a solution
I'm not really sure where to start. We just want to show that ##\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = 0##. I see that ##\lim_{x \to c} (x - c)^2 = 0##. I feel that this may be a simple trick of inequalities, but I am having a complete brain fart at the moment. Can anyone provide any direction? Thanks in advance for any response.
 
Physics news on Phys.org
What is ##f(c)## equal to? Can you then find an upper bound for ##\frac{|f(x) - f(c)|}{|x - c|}##?
 
Last edited:
Krylov said:
What is ##f(c)## equal to? Can you then find an upper bound for ##\frac{|f(x) - f(x)|}{|x - c|}##?
Aha, yes! I didn't even consider finding what ##f(c)## equals. Having ##|f(x)| \leq (x - c)^2## for all ##x \in I## forces ##f(c) = 0##. Now, to find ##f'(c)## we must now find $$\lim_{x \to c} \frac{f(x)}{x - c}$$, which we can show to be ##0##, if we can alternatively show that $$\lim_{x \to c}|\frac{f(x)}{x-c}| = \lim_{x \to c}\frac{|f(x)|}{|x-c|} = 0$$. Now, ##|f(x)| \leq (x - c)^2## for all ##x \in I##, also implies that for ##x \in I-\{c\}##, ##\frac{|f(x)|}{|x-c|} \leq |x - c|##. Since the latter's limit is 0, and both are point-wise positive, we have that $$\lim_{x \to c}|\frac{f(x)}{x-c}| = 0$$, and we are done.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top