Show that w is solenoidal having spherical polar coordinates

YogiBear
Messages
7
Reaction score
0

Homework Statement


The gradient, divergence and curl in spherical polar coordinates r, ∅, Ψ are
nablaΨ = ∂Φ/∂r * er + ∂Φ/∂∅ * e 1/r + ∂Φ/∂Ψ * eΨ * 1/(r*sin(∅))
nabla * a = 1/r * ∂/∂r(r2*ar) + 1/(r*sin(∅)*∂/∂∅[sin(∅)a] + 1/r*sin(∅) * ∂aΨ/∂Ψ
nabla x a =

|er r*e r*sin(∅)*eΨ |
|∂/∂r ∂/∂∅ ∂/dΨ |
| 1/r2*sin(∅) |ar r*a r*sin(∅)*aΨ |

Where a = ar * er + a*e + aΨ*eΨ

Suppose that the vector field w has the form w = wΨ(r, ∅) eΨ Show that w is
solenoidal and find wΨ(r, ∅), when w is also irrotational. Find a potential for w in this case.
hah..PNG

Homework Equations

The Attempt at a Solution


I started by finding vector potential. however it seems too simple. (Or most likely id id it wrong). In addition i am not sure, if it is even the right way to about it. I can't put in working out of the vector potential i have, as i have trouble with coding it on the forum(My handwriting is not legible). So you can assume i have got it wrong. Any help will be greatly appreciated.
 
Physics news on Phys.org
First.

To show that ω is solenoidal implies that the divergence of the vector field is 0. Thats easy to show:

$$∇·\omega = \frac{1}{r\sin\theta}\; \frac{\partial\omega_\phi(r,\theta)}{\partial\phi}$$

and since the φ component of ω does not depend on φ, it's partial derivative equals 0.

So the vector field is solenoidal.

Second.

We must impose that ×ω=0.
$$∇×\omega=\begin{vmatrix} ê_r & rê_\theta &r\sin\thetaê_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta}& \frac{\partial}{\partial \phi} \\ 0&0&r\sin\theta\omega_\phi\end{vmatrix} \;=\; ê_r \left[ \frac{\partial\omega_\phi}{\partial \theta}r\cos\theta \right] - ê_\theta \left[ \frac{\partial\omega_\phi}{\partial r}r\sin\theta \right] $$

And this is 0 ∀r,φ if ωφ is not really dependent on θ and r. So ωφ=C (is constant on all variables).

And now I am stuck... I really doubt on this second result. I'm sorry, but I'll wait until someone else come check it. Maybe this help you on finding a path.
 
  • Like
Likes YogiBear
marksman95 said:
First.

To show that ω is solenoidal implies that the divergence of the vector field is 0. Thats easy to show:

$$∇·\omega = \frac{1}{r\sin\theta}\; \frac{\partial\omega_\phi(r,\theta)}{\partial\phi}$$

and since the φ component of ω does not depend on φ, it's partial derivative equals 0.

So the vector field is solenoidal.

Second.

We must impose that ×ω=0.
$$∇×\omega=\begin{vmatrix} ê_r & rê_\theta &r\sin\thetaê_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta}& \frac{\partial}{\partial \phi} \\ 0&0&r\sin\theta\omega_\phi\end{vmatrix} \;=\; ê_r \left[ \frac{\partial\omega_\phi}{\partial \theta}r\cos\theta \right] - ê_\theta \left[ \frac{\partial\omega_\phi}{\partial r}r\sin\theta \right] $$

And this is 0 ∀r,φ if ωφ is not really dependent on θ and r. So ωφ=C (is constant on all variables).

And now I am stuck... I really doubt on this second result. I'm sorry, but I'll wait until someone else come check it. Maybe this help you on finding a path.
20150507_201842.jpg

I have figured out part 2, very similar to part one. Cross multiply the matrix, and we get 0. I think I am getting somewhere on part three as well. Thank you. And your LaTeX skills are too good xD
 
MMMM... I think you got that rotational wrong. You cannot cancel those partial derivatives inside the determinant.

Those vectors aren't zero, but their associated components.

Also I think you haven't understood the exercice. It doesn't demand you to show that is irrotational, but to assume it is in order to find out what is the function of the phi component.
 
  • Like
Likes YogiBear
Of course. I rushed to conclusion without reading question fully...

thanks for the help thought, i would have had it completely wrong otherwise.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top