Bapelsin
- 12
- 0
Show that wave packet is an eigenstate to operator [SOLVED]
For a harmonic oscillator we can define the step up and down operators \hat{a} and \hat{a}^{\dagger} and their action as
\hat{a}=\sqrt{\frac{m\omega}{2\hbar}}(\hat{x}+\frac{\imath}{m\omega}\hat{p}) \quad \hat{a}|n\rangle = \sqrt{n}|n-1\rangle
\hat{a}^{\dagger}=\sqrt{\frac{m\omega}{2\hbar}}(\hat{x}-\frac{\imath}{m\omega}\hat{p}) \quad \hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle
Show that the Gaussian wave-packet
\Psi(x)=\left(\frac{m\omega}{\pi\hbar}\right)^{1/4}e^{-\frac{m\omega}{2\hbar}(x-x_t)^2+\frac{\imath}{\hbar}p_t(x-x_t)}
is an eigenstate to \hat{a} with eigenvalue \alpha.
\hat{a}|a\rangle = \alpha | a\rangle
Express the eigenvalue in terms of x_t and p_t.
See above.
\hat{p} \rightarrow -i\hbar\frac{\partial}{\partial x}
gives the expression for
\hat{a}=\sqrt{\frac{m\omega}{2\hbar}}(\hat{x}+\frac{\hbar}{m\omega}\frac{\partial}{\partial x})
\hat{a}|\Psi\rangle = \sqrt{\frac{m\omega}{2\hbar}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}\left(e^{-\frac{m\omega}{2\hbar}(x-x_t)^2+\frac{\imath}{\hbar}p_t(x-x_t)} + \frac{\hbar}{m\omega}(-\frac{m\omega}{\hbar}(x-x_t)+\frac{\imath}{\hbar}p_t(e^{-\frac{m\omega}{2\hbar}(x-x_t)^2+\frac{\imath}{\hbar}p_t(x-x_t)})\right) = <br /> \Psi\sqrt{\frac{m\omega}{2\hbar}}\left(1+(x-x_t)+\frac{\imath}{m\omega}p_t\right)
which is obviously not a scalar times \Psi.
What am I doing wrong here?
Homework Statement
For a harmonic oscillator we can define the step up and down operators \hat{a} and \hat{a}^{\dagger} and their action as
\hat{a}=\sqrt{\frac{m\omega}{2\hbar}}(\hat{x}+\frac{\imath}{m\omega}\hat{p}) \quad \hat{a}|n\rangle = \sqrt{n}|n-1\rangle
\hat{a}^{\dagger}=\sqrt{\frac{m\omega}{2\hbar}}(\hat{x}-\frac{\imath}{m\omega}\hat{p}) \quad \hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle
Show that the Gaussian wave-packet
\Psi(x)=\left(\frac{m\omega}{\pi\hbar}\right)^{1/4}e^{-\frac{m\omega}{2\hbar}(x-x_t)^2+\frac{\imath}{\hbar}p_t(x-x_t)}
is an eigenstate to \hat{a} with eigenvalue \alpha.
\hat{a}|a\rangle = \alpha | a\rangle
Express the eigenvalue in terms of x_t and p_t.
Homework Equations
See above.
The Attempt at a Solution
\hat{p} \rightarrow -i\hbar\frac{\partial}{\partial x}
gives the expression for
\hat{a}=\sqrt{\frac{m\omega}{2\hbar}}(\hat{x}+\frac{\hbar}{m\omega}\frac{\partial}{\partial x})
\hat{a}|\Psi\rangle = \sqrt{\frac{m\omega}{2\hbar}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}\left(e^{-\frac{m\omega}{2\hbar}(x-x_t)^2+\frac{\imath}{\hbar}p_t(x-x_t)} + \frac{\hbar}{m\omega}(-\frac{m\omega}{\hbar}(x-x_t)+\frac{\imath}{\hbar}p_t(e^{-\frac{m\omega}{2\hbar}(x-x_t)^2+\frac{\imath}{\hbar}p_t(x-x_t)})\right) = <br /> \Psi\sqrt{\frac{m\omega}{2\hbar}}\left(1+(x-x_t)+\frac{\imath}{m\omega}p_t\right)
which is obviously not a scalar times \Psi.
What am I doing wrong here?
Last edited: