Showing the equivalence of lagrangians

dingo_d
Messages
199
Reaction score
0

Homework Statement



I have a lagrangian written as:

\mathcal{L}_H = \text{Tr}\left[\,(D_\mu \Phi)^\dagger D^\mu \Phi\right] - \mu^2 \text{Tr}\left[\,\Phi^\dagger \Phi\right] - \lambda (\text{Tr}\left[\,\Phi^\dagger \Phi\right])^2

Where the field is:

\Phi \equiv \frac{1}{\sqrt{2}}(i \sigma_{2} \phi^*, \phi) = \frac{1}{\sqrt{2}} \begin{pmatrix}\phi^{0*} & \phi^+ \\-\phi^- & \phi^0\end{pmatrix} \;,

and

D_\mu \Phi \equiv \partial_\mu \Phi + i g \frac{\sigma^{i}}{2} W^{i}_\mu \Phi - i \frac{g'}{2} B_\mu \Phi \sigma_3 \;.

And I need to show that that is the same as:

$\mathcal{L}_H = \left[(\partial_\mu+ig{\bf{T}\cdot W_\mu}+ig'\frac{Y}{2}B_\mu)\phi\right]^\dagger\left[(\partial_\mu+ig{\bf{T}\cdot W_\mu}+ig'\frac{Y}{2}B_\mu)\phi\right]-\mu^2(\phi^\dagger\phi)-\lambda(\phi^\dagger\phi)^2.

Now, I have easily shown that the potential part really is the same, by explicitly doing matrix multiplication, and showing that the expression with the trace is the same as the one without, but how to show the kinetic part? What to do here?

Any help is welcome :)
 
Physics news on Phys.org
You haven't specified the weak isospin \mathbf{T} and hypercharge operator Y, but I think you will find that they are precisely defined so that this equivalence follows.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top