(simple) find where the graph intresect

  • Thread starter Thread starter seto6
  • Start date Start date
  • Tags Tags
    Graph
seto6
Messages
248
Reaction score
0

Homework Statement


f(x,y)=(2x2+y2-5
f(x.y)=2xy-1


Homework Equations



non

The Attempt at a Solution



i set both of then equal to each other and i got the following:
2x2+y2-2xy-4=0
\after this step I am kind of lost...

not sure what to do
 
Physics news on Phys.org
also not sure how to separate the x and the y
 
some1 pls..
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top