Simple harmonic motion rope swing problem

AI Thread Summary
Jane needs a minimum speed of 8.55 m/s to swing across the river, considering her mass, wind resistance, and height change. For the return swing, the calculations initially led to a negative value for velocity, indicating that the wind's energy could allow her to return without additional speed. This suggests that the wind provides sufficient force to counteract the gravitational pull during her return. The negative velocity implies she could potentially swing back without needing an initial push. Understanding these dynamics clarifies the role of external forces in simple harmonic motion scenarios.
Ertosthnes
Messages
49
Reaction score
0
Jane wants to swing on a rope across a river. What minimum speed does she need to make it across, and once she's across, what minimum speed does she need to make it back?

Here's what's given:
mass = 47 kg
horizontal wind - call it F - (opposite to her swing) = 120 N
horizontal distance (D) = 50 m
rope length (L) = 40 m
theta = 50 degrees

p5-73.gif

(hopefully you can see the image)

Here's how I started:

D = Lsin(theta) + Lsin(phi)

Plug in the values, and phi = 28.9 degrees

Then, Change in height = Lcos(phi) - Lcos(theta)
Plug in the values, change in height = 9.3 m

From there:

PE(o) + KE(o) + wind = PE(f) + KE(f)

mgh(0) + (1/2)mv(0)^2 - F(w)*D = mgh(f) + (1/2)mv(f)^2

and v(0) = 8.55 m/s

I got that part right. But, now how do I find the minimum velocity to go back? I tried switching the h(0) and h(f) in that last equation to go back, but it didn't work. What's wrong?
 
Physics news on Phys.org
Have you considered that she is now swinging with the wind?
 
Yes, I did. Here's what happens:

mgh(0) + (1/2)mv(0)^2 + F(w)*D = mgh(f) + (1/2)mv(f)^2

46(9.8)(-9.3) + (1/2)(47)v(o)^2 + 120(50) = 0

and v(o)^2 = -76.92

But the fact that it's negative makes me think that it's wrong. Can I still take the square root of it?

Edit: Apparently I can. I just tried it again and got it right.
 
Last edited:
But if you got a negative velocity, it means that the wind provides enough energy to Jane to reach that point, so that she doesn't need any initial velocity.
 
That's weird. Are you sure the negative doesn't just mean that Jane is swinging in the opposite direction? Is there something I should have done to make the velocity squared positive?
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top