Simple (I think) Hydrostatics Problem

  • Thread starter Thread starter cellery
  • Start date Start date
  • Tags Tags
    Hydrostatics
AI Thread Summary
The discussion revolves around a hydrostatics problem involving a submerged tank with water and air, where a hole at the top allows air to escape while water enters from the bottom. The user seeks assistance in calculating the water flow velocity into the tank and the air flow velocity out, treating the moment of opening as steady. Key parameters include the areas of the openings, hydrostatic pressures, and initial conditions such as the air pressure in the tank. There is an acknowledgment that the initial air pressure is crucial for modeling the governing differential equations. The user expresses a need for guidance on formulating the governing equations for this unsteady flow scenario.
cellery
Messages
6
Reaction score
0
Being a rather novice engineer, I'm having trouble coming up with a solution to this problem. I think it's a rather simple problem with just a slightly complex twist (unsteady flow).

There's a tank submerged in water a certain depth (pictured). The tank has a known volume and contain a known initial volumes of water and air. At a certain instant, a hole is opened in the top of the tank such that air rushes out the top and water rushes in the bottom.

I realize this is an unsteady flow problem since the tank has a finite volume and it fills with water, displacing the air, but I think if someone could help me understand how to calculate the water flow velocity into the bottom and the air flow velocity out from the top just at the instant the top is opened (i.e., consider it steady for just that instant), I can do the rest of the unsteady analysis. If someone is willing to help model this as an unsteady problem, that's great too.

I know: the areas of the openings at the top and the bottom, the depths below the surface of the top and bottom of the tank (and therefore the hydrostatic pressures at each), the volume of the tank, the initial volumes of water and air in the tank, the initial height of water in the tank, and flow loss factors for the bottom and top holes.

I've been modeling the differential pressure across the holes like so:

deltaP = (1/2)*density*V_bottom^2*k_bottom, likewise for the top, where k is the flow loss factor associated with the shape of the hole.

I think that's about it. Any help would be appreciated. Thanks
 

Attachments

  • photo.jpg
    photo.jpg
    26.3 KB · Views: 415
Engineering news on Phys.org
Maybe I missed something in my cursory inspection of the problem, but shouldn't you need to know the pressure of the air in the tank to begin with as well? That isn't a trivial quantity here and it, in general, isn't a constant through the process either.
 
The air in the tank is at atmospheric pressure to begin. It actually opens to the atmosphere first before the top of the tank submerges, but I'm overly generalizing the problem to get a better understanding of what's going on here.
 
Right, but overly generalizing the problem should include knowing the initial air pressure. That is an important initial condition for your governing differential equation.
 
You're absolutely right, this is just a situation where because it was obvious to me (since I know I'll have it open to atmosphere), I failed to mention it in my post. The original post should have mentioned that the initial pressure of the air is known as well.

Given these knowns, I need help determining the governing diff eq. Having had so little (read: almost none) experience with unsteady flow problems in school, this unsteady problem is tripping me up.
 
Last edited:
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Thread 'Calculate minimum RPM to self-balance a CMG on two legs'
Here is a photo of a rough drawing of my apparatus that I have built many times and works. I would like to have a formula to give me the RPM necessary for the gyroscope to balance itself on the two legs (screws). I asked Claude to give me a formula and it gave me the following: Let me calculate the required RPM foreffective stabilization. I'll use the principles of gyroscopicprecession and the moment of inertia. First, let's calculate the keyparameters: 1. Moment of inertia of...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top