Simple volume calculation problem (double integrals)

xio
Messages
11
Reaction score
0
[EDIT]: Found the mistake, see the next post.

Homework Statement


Evaluate $$\iint_{S}{\rm e}^{x+y}dx\, dy,S=\{(x,y):\left|x\right|+\left|y\right|\leq1\} $$

2. The attempt at a solution
##\left|x\right|+\left|y\right|## is the rhombus with the center at the origin, symmetrical about both axes, so we find the volume at the first quadrant and then multiply by four.

2u5w3mx.png


##\varphi(x)=1-x## limits the region of integration and so we have, first integrating over ##y## : $$\iint_{S}{\rm e}^{x+y}dx\, dy=4\int_{0}^{1}\left[\int_{0}^{1-x}{\rm e}^{x}{\rm e}^{y}dy\right]dx=1\neq {\rm e}-{\rm e}^{-1}$$ (I know the correct answer which is ##{\rm e}-{\rm e}^{-1}## )

Apparently so simple, but I just can't see the mistake.
 
Last edited:
Physics news on Phys.org
Oh Lord, ##{\rm e}^{x+y}## obviously isn't symmetric.
 
xio said:
Oh Lord, ##{\rm e}^{x+y}## obviously isn't symmetric.

True. Did you work the problem using the "obvious" change of variables?
 
LCKurtz said:
True. Did you work the problem using the "obvious" change of variables?

Hrm... I guess I cheated: I took the total volume to be the sum of volumes over the triangles formed by the axes and four diagonal lines (##x+1##, ##1-x##, ##-x-1##, ##x-1##): $$ \int_{-1}^{0}\left[\int_{0}^{x+1}{\rm e}^{x+y}dy\right]dx+\int_{-1}^{0}\left[\int_{-x-1}^{0}{\rm e}^{x+y}dy\right]dx+\ldots, $$ took the first one $$\int_{1}^{0}\left[\int_{0}^{x+1}{\rm e}^{x+y}dy\right]dx=\int_{-1}^{0}{\rm e}^{2x+1}-{\rm e}^{x}dx=\frac{1}{2}({\rm e}+{\rm e}^{-1})-1 $$ and then asked sage to do the rest because they are essentially the same and evaluating them all has no didactic value.

By the way, I'm learning this stuff on my own, so I might not know the standard way of approaching problems like this. My book (Apostol) says nothing about the change of variables if I understand correctly.

What I dislike about this sort of examples is that I have to plot some of the functions first to actually understand what's going; TBH I'd enjoyed more analytic (or algorithmic) approach, where the peculiarities of a particular example wouldn't matter.

(too many "I"'s in this post)
 
No, that's not what LCKurtz meant by "the obvious change of variables".

If you let u= x+ y and v= x- y, then x= (u+ v)/2 and y= (u- v)/2. The figure is then -1\le u\le 1, -1\le v\le 1.The Jacobean is 1/2 so the integral becomes
\frac{1}{2}\int_{u=-1}^1\int_{v=-1}^1 e^u dvdu
 
HallsofIvy said:
No, that's not what LCKurtz meant by "the obvious change of variables".

I never suggested that.

Change of variables is some ten subsections below my current position in Apostol, but I liked the technique, thank you.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top