Saitama
- 4,244
- 93
Homework Statement
If ##\displaystyle \tan\left(\frac{\pi}{4}+\frac{y}{2}\right)=\tan^3\left( \frac{\pi}{4}+\frac {x}{2} \right)##, prove that $$\frac{\sin y}{\sin x}=\frac{3+\sin^2 x}{1+3\sin^2x}$$
Homework Equations
The Attempt at a Solution
$$\tan\left(\frac{\pi}{4}+\frac{y}{2}\right)=\frac{1+\tan (y/2)}{1-\tan(y/2)}=\frac{\cos (y/2)+\sin (y/2)}{\cos (y/2)-\sin(y/2)}=\frac{1+\sin y}{\cos y}$$
Similarly,$$\tan\left(\frac{\pi}{4}+\frac{x}{2}\right)=\frac{1+\sin x}{\cos x}$$
Plugging them,
$$\frac{1+\sin y}{\cos y}=\left(\frac{1+\sin x}{\cos x}\right)^3$$
Stuck here. Need a few hints to proceed further.
Any help is appreciated. Thanks!