Simultaneous observables for hydrogen

bobred
Messages
170
Reaction score
0

Homework Statement


Is there a state that has definite non-zero values of E, L^2 and L_x

Homework Equations



L^2 and L_z commute with the Hamiltonian so we can find eigenfunctions for these

The Attempt at a Solution


I would say that there is a state with simultaneous eigenfunctions of L_x,L_y,L_z and L^2, but with eigenvalues equal to zero. This being the state with l=0 and m=0, so there are no definite non-zero values of E, L^2 and L_x. For other states L_x,L_y,L_z and L^2 do not commute.
 
Physics news on Phys.org
Hello.

Something to think about. Should the z axis be special in the hydrogen atom? That is, if there exist states with definite non-zero eigenvalues of ##E, L^2,## and ##L_z##, why shouldn't there exist states with definite non-zero eigenvalues of ##E, L^2,## and ##L_x##?

Suppose you had a wavefunction ##\psi(r, \theta, \phi)## that represents an eigenstate of ##E, L^2,## and ##L_z##. Can you think of how you could transform ##\psi(r, \theta, \phi)## into another function ##\psi'(r, \theta, \phi)##that would be an eigenstate of ##E, L^2,## and ##L_x## with the same eigenvalues for ##E## and ## L^2## and with an eigenvalue of ##L_x## equal to the eigenvalue that ##\psi## had for ##L_z##?

[Edit: It might be easier to think in terms of Cartesian coordinates ##\psi(x, y, z)]##
 
Last edited:
  • Like
Likes 1 person
Thanks, z is an arbitrary choice.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top