MrB3nn
- 16
- 0
1. The problem statement, all variables and givenknown data
Let r be a position vector from the origin (r=xi+yj+zk), whose magnitude is r, and let f(r) be a scalar function of r. Sketch the field lines of f(r)r
1 \nablax(\nabla\Psi)=0
2 \nabla.(\nablaxv)=0
3 \nablax(\nablaxv)=\nabla(\nabla.v)-\nabla\^{}2v
4 \nabla.(\Psiv)=\Psi\nabla.v+v.\nabla\Psi
I can't get started on this question. I have no idea how you can draw a sketch of the field lines when the scalar function is unknown. My intuition says you should be able to use some of those identities but I need a push in the right direction. I hope someone can give me that.
Let r be a position vector from the origin (r=xi+yj+zk), whose magnitude is r, and let f(r) be a scalar function of r. Sketch the field lines of f(r)r
Homework Equations
1 \nablax(\nabla\Psi)=0
2 \nabla.(\nablaxv)=0
3 \nablax(\nablaxv)=\nabla(\nabla.v)-\nabla\^{}2v
4 \nabla.(\Psiv)=\Psi\nabla.v+v.\nabla\Psi
The Attempt at a Solution
I can't get started on this question. I have no idea how you can draw a sketch of the field lines when the scalar function is unknown. My intuition says you should be able to use some of those identities but I need a push in the right direction. I hope someone can give me that.