Insights Slowly Lowering an Object in a Static, Spherically Symmetric Spacetime

Messages
49,065
Reaction score
25,159
In the first two articles in this series, we looked at the Einstein Field Equation and Maxwell’s Equations in a static, spherically symmetric spacetime. Using formulas from those two previous articles, I now want to consider the question: what is the maximum amount of work that can be extracted by slowly lowering an object into a static, spherically symmetric gravitational field? This is a concrete, physical way of defining the concept of “potential energy”. (We’ll come back to the concept of “potential energy” and its relationship to other concepts of energy at the end of this article.)
We start with some comments and definitions. By “slowly lowering” we mean that the radial motion of the object is at some very slow, constant speed so that we...

Continue reading...
 
Last edited by a moderator:
  • Like
Likes vanhees71 and Greg Bernhardt
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top