Small sample test for the difference between two means

Poke

Homework Statement



The article “Variance Reduction Techniques: Experimental Comparison and Analysis for Single Systems” (I.Sabuncuoglu,M. Fadiloglu, and S. Celik, IIE Transactions, 2008:538–551) describes a study of the effectiveness of the method of Latin Hypercube Sampling in reducing the variance of estimators of the mean time-in-system for queueing models. For the M/M/1 queueing model, ten replications of the experiment yielded an average reduction of 6.1 with a standard deviation of 4.1. For the serial line model, ten replications yielded anaveragereductionof6.6withastandarddeviationof 4.3. Can you conclude that the mean reductions differ between the two models?

Homework Equations



nx = 10 ; X= 6.1 ; Sx = 4.1
ny = 10 ; Y= 6.6 ; Sy = 4.3

H0: X-Y = 0 ; H1: X-Y ≠0 ; Δ0 = 0

As we cannot assume standard deviations to be equal, we use the formula that find student's t and the degree of freedom v.

The Attempt at a Solution



It is found that v = 17.959, rounded down to 17
with t calculated as 0.2661

As H1: X-Y ≠0, P is the sum of cutoffs
We are to find Alpha, based on v = 17 and t' = 2t = 0.5322
It is founded that alpha between 0.25 and 0.40

All of which higher than 5%, so H0 is not rejected, and cannot conclude the mean reductions differ between the two models.My approaches correct, as well as the answer make sense? Thanks!
 
Physics news on Phys.org
Not sure why you doubled t to t' = 2t = 0.5322 rather than using t directly. Do you have a reference for that? (I don't think that Welch's t-test does that.)

Your final conclusion of no significant difference certainly makes sense. A rough "guestimate" of the 95% confidence interval on the first sample puts the second sample mean well within the interval.
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top