Solution for a second order differential equation

anooja559
Messages
3
Reaction score
0
Member has been advised to use the template and show some effort.
Hi,
Could you please help me to solve a second-order differential equation given below
∂M/r∂r+∂2M/∂r2 = A

[Moderator's note: Moved from a technical forum and thus no template.]
 
Last edited by a moderator:
Physics news on Phys.org
anooja559 said:
Hi,
Could you please help me to solve a second-order differential equation given below
∂M/r∂r+∂2M/∂r2 = A
Hi Anooja, what have you done so far? Where are you stuck?
 
WWGD said:
Hi Anooja, what have you done so far? Where are you stuck?
Hi WWGD,
Thank you so much.
So I integrated the equation
∫(∂M/r∂r+∂2M/∂r2 )= ∫A ----(1)
ie ∫∂M/r∂r+∫∂2M/∂r2 = ∫A
1/r*M-∫-1/r2*M + ∂M/∂r = A*r+C1 (integral by parts)
2*M/r+∂M/∂r = A*r+C1 ----(2)
Integrating eq(2) again

∫2*M/r+∂M/∂r = ∫A*r+C1

Which gives,
2*M*ln(r)+M = A*r2+C1*r+C2

However, the reference shows the solution as M = Ar2+C1*ln(r)+C2
 
anooja559 said:
Integrating eq(2) again

∫2*M/r+∂M/∂r = ∫A*r+C1

Which gives,
2*M*ln(r)+M = A*r2+C1*r+C2
∫2*M/r isn't equal to 2M∫ (1/r).
I can't really see how to do it, except by just guessing M = a r^b

The reference solution isn't completely correct, it should be M = \frac{ Ar^2}{4} +C_1 ln(r) +C_2
 
willem2 said:
∫2*M/r isn't equal to 2M∫ (1/r).
I can't really see how to do it, except by just guessing M = a r^b

The reference solution isn't completely correct, it should be M = \frac{ Ar^2}{4} +C_1 ln(r) +C_2
Dear Willem,
That is great, Thanks a lot, Could you please elaborate on how to get this
 
If you let ##y = \frac{dM}{dr}##, you have the first-order differential equation
$$ y' + \frac 1r y = A.$$ Can you solve that one?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top