- 6,221
- 31
Homework Statement
Find
\int \frac{1}{lnx} dx
The Attempt at a Solution
Let t=lnx \Rightarrow \frac{dt}{dx}=\frac{1}{x} \Rightarrow dx=e^t dt
\int \frac{1}{lnx} dx \equiv \int \frac{e^t}{t} dt
and well
e^t= \sum _{n=o} ^{\infty} \frac{t^n}{n!}
\frac{e^t}{t}=\sum _{n=o} ^{\infty} \frac{t^{n-1}}{n!}
\int \frac{e^t}{t}=\int \sum _{n=o} ^{\infty} \frac{t^{n-1}}{n!}
=\sum _{n=o} ^{\infty} \frac{t^{n}}{(n+1)!}
Is there any easier closed form solution for this?