Solution to Expansion of arctanx Problem

  • Thread starter Thread starter azatkgz
  • Start date Start date
  • Tags Tags
    Expansion
azatkgz
Messages
182
Reaction score
0
Problem

expansion
arctanx=\frac{\pi}{2}-\frac{1}{x}+o(\frac{1}{x})

Attempt:
arctanx=y
tany=x
for y=\frac{\pi}{2}-z tan(\frac{\pi}{2}-z)=\frac{1}{tanz}=x
\frac{cosz}{sinz}=\frac{1+o(z^2)}{z+o(z^3)}=\frac{1}{z}(1+o(z^2))=x*
arctanx=y=\frac{\pi}{2}-z=\frac{\pi}{2}-\frac{1}{x}+o(\frac{1}{x})
But how we can convert \frac{1}{z}(1+o(z^2))=x
to z=\frac{1}{x}+o(\frac{1}{x})
 
Physics news on Phys.org
i think I've found the answer.
z=\frac{1}{x}+o(\frac{z^2}{x})
arctanx=y=\frac{\pi}{2}-z
z=\frac{\pi}{2}-arctanx=o(1)(x\rightarrow\infty)
so
z=\frac{1}{x}+o(\frac{1}{x})
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top