azatkgz
- 182
- 0
Problem
expansion
arctanx=\frac{\pi}{2}-\frac{1}{x}+o(\frac{1}{x})
Attempt:
arctanx=y
tany=x
for y=\frac{\pi}{2}-z tan(\frac{\pi}{2}-z)=\frac{1}{tanz}=x
\frac{cosz}{sinz}=\frac{1+o(z^2)}{z+o(z^3)}=\frac{1}{z}(1+o(z^2))=x*
arctanx=y=\frac{\pi}{2}-z=\frac{\pi}{2}-\frac{1}{x}+o(\frac{1}{x})
But how we can convert \frac{1}{z}(1+o(z^2))=x
to z=\frac{1}{x}+o(\frac{1}{x})
expansion
arctanx=\frac{\pi}{2}-\frac{1}{x}+o(\frac{1}{x})
Attempt:
arctanx=y
tany=x
for y=\frac{\pi}{2}-z tan(\frac{\pi}{2}-z)=\frac{1}{tanz}=x
\frac{cosz}{sinz}=\frac{1+o(z^2)}{z+o(z^3)}=\frac{1}{z}(1+o(z^2))=x*
arctanx=y=\frac{\pi}{2}-z=\frac{\pi}{2}-\frac{1}{x}+o(\frac{1}{x})
But how we can convert \frac{1}{z}(1+o(z^2))=x
to z=\frac{1}{x}+o(\frac{1}{x})