Solutions to Span of Functions Problems

  • Thread starter Thread starter gummz
  • Start date Start date
  • Tags Tags
    Functions Span
gummz
Messages
32
Reaction score
2
So let's say I have a function that I want to find out if is in the span of two other functions, for example, a*f + b*g = h, where f, g, and h are functions, and a and b are constants. Let's say I find a solution where a and b are not constants. Does that still mean that h is in the span of f and g, even though a and b are not constants?
 
Physics news on Phys.org
gummz said:
Does that still mean that h is in the span of f and g, even though a and b are not constants?
No
 
For a function h to be in the span of two other functions f and g, h must be a linear combination of f and g. IOW, h = af + bg, where a and b are constants. It's almost exactly the same definition for a vector to be in the span of two other vectors.
 
It would be nice if the OP could be more specific about the vector space s/he is working in; gummz, can
you tell us more about what space you are working in? are g,h part of a basis for the space?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top