Solve 1st Order Linear ODE Initial Value Problem

  • Thread starter Thread starter Punchlinegirl
  • Start date Start date
  • Tags Tags
    Linear Ode
Punchlinegirl
Messages
221
Reaction score
0
Find the solution of the given initial value problem
y'-y=2te^2t y(0)=1

so p(t)=-1
then \mu (t)= e^/int -1 dt= e^-t
e^-t y'-e^-t y=2te^2te^-t
d/dt [e^-t y]=2te^t dt
e^-t =\int 2te^t dt
e^-t y= 2te^t-2e^t
y=-2(t-1)+ce^-t
plugging in the initial conditon gives me
y(t)=-2(t-1)-e^-t

Am I doing this right? If not, can someone help?
 
Physics news on Phys.org
I = e^{-\int t} = e^{-t dt}.

So you get ye^{-t} = 2\int te^{t} dt = 2te^{t} - 2e^{t} + C

y = \frac{2te^{t} - 2e^{t} + C}{e^{-t}}

y = \frac{2te^{t} - 2e^{t} + 2}{e^{-t}}

y = 2te^{2t} - 2e^{2t} + 2e^{t}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top