Solve an exponential equation

  • #1

Rectifier

Gold Member
313
4
The problem
Solve ## e^x-e^{-x} = 6 ## .

The attempt
$$ e^x-e^{-x} = 6 \\ e^x(1-e^{-1}) = 6 \\ e^x = \frac{6}{(1-e^{-1})} \\ x = \ln \left( \frac{6}{1-e^{-1}} \right) \\ $$

The answer in the book is ## \ln(3 + \sqrt{10})##

Could someone help me?
 
  • #2
I made a mistake at the second step ## e^{-x} \neq e^{-1} \cdot e^x ##
 
  • #3
I made a mistake at the second step ## e^{-x} \neq e^{-1} \cdot e^x ##

Make the substitution y = e^x.
 
  • #4
I made a mistake at the second step ## e^{-x} \neq e^{-1} \cdot e^x ##

Right: ##e^{-x} = \frac{1}{e^x}##.
 

Suggested for: Solve an exponential equation

Replies
3
Views
508
Replies
21
Views
661
Replies
11
Views
2K
Replies
5
Views
930
Replies
2
Views
316
Replies
27
Views
2K
Replies
2
Views
1K
Replies
7
Views
645
Replies
5
Views
368
Back
Top