Solve complex 2nd order differential equation

tetris11
Messages
22
Reaction score
0

Homework Statement



t''[x] = \frac{2}{t} t'[x]^{2}

The Attempt at a Solution



This is not your basic 2ODE, since I can't separate the components into y'', y' and y.

Help?

I've so far tried:
\frac{d^{2}t}{dx^{2}}=\frac{2}{t}(\frac{dt}{dx})^{2}

\frac{dt}{dx}=\frac{2}{t}(\frac{dt}{dx})^{2}dx

dt=\frac{2}{t}(\frac{dt^{2}}{dx})

\frac{1}{2}dx=\frac{1}{t}dt

\frac{1}{2}x+k=ln[t]+c

t = e^{k-c}e^{\frac{1}{2}x

somehow this doest seem right...
 
Last edited:
Physics news on Phys.org
How about writing the equation as

\frac{t''}{t'} = 2 \frac{t'}{t}?
 
So I then get:

ln(t') +c = 2ln(t) +k ?

2ln(t) - ln(t') -R = ln(\frac{t^{2}}{t'}) = ln(R) (my maths is pretty rusty)
 
Last edited:
tetris11 said:
So I then get:

ln(t') +c = 2ln(t) +k ?

2ln(t) - ln(t') -R = ln(\frac{t^{2}}{t'}) = R (my maths is pretty rusty)

Yep, it might be easier to write this in the form

ln(\frac{t^{2}}{t'}) = \ln C,

since the next step is to manipulate this into an easy first-order equation for t.
 
ln(\frac{t^{2}}{t'}) = ln(R)

t^{2} = R\frac{dt}{dx}

\int\frac{1}{t^{2}} dt =\int -R dx

\frac{-1}{t} +k = -Rx +c

t = \frac{A}{Rx+j}

thanks dude!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top