MHB Solve Complex Logarithm Problem on Domain D | Yahoo! Answers

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Complex Logarithm
AI Thread Summary
The discussion focuses on proving that the logarithmic function G(z) maps the modified domain D onto a horizontal strip in the complex plane, specifically {x + iy: x ∈ R, c < y < c + 2π}. The function G(z) is defined as G(z) = log z = log |z| + i arg z, where the argument varies continuously within the specified range. As z varies over D, the magnitude |z| spans (0, +∞), leading to log |z| covering all real numbers. The argument can be adjusted to fit within the interval (c, c + 2π), confirming that G is one-to-one on D. This establishes the desired mapping and uniqueness of G on the specified domain.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote an unsolved question from Yahoo! Answers

let D be the domain obtained by deleting the ray {x, x<=0} from the plane and let G(z) be a branch of log z on D. Show that G maps D onto a horizontal strip of width of 2pi,
{ x+iy: belong to R, c<y<c+2pi} and the mapping is one to one on D.

Thanks

I have given a link to the topic there so the OP can see my complete response.
 
Mathematics news on Phys.org
Firstly consider $G:D\to\mathbb{C}$, $G(z)=\log z=\log |z|+i\arg z$ where $\arg$ is the principal argument of $z$. When $z$ varies on $D$, $|z|$ varies on $(0,+\infty)$ hence, $\log |z|$ varies on $(-\infty,+\infty)$. When $z$ varies on $D$, $\arg z$ varies on $(-\pi,\pi)$. This implies $$G(D)=\mathbb{R}+(-\pi,\pi)i=\{x+iy:x\in\mathbb{R},y\in(-\pi,\pi)\}$$ Another continuous argument has the form $\arg_c z\in(c,c+2\pi)$, and we get the result. On the other hand, $$G(z_1)=G(z_2)\Rightarrow \log |z_1|+i\arg_c z_1=\log |z_2|+i\arg_c z_2\Rightarrow\\ \log |z_1|=\log |z_2|\;\wedge\;\arg_c z_1=\arg_c z_2\Rightarrow |z_1|=|z_2|\;\wedge\;\arg_c z_1=\arg_c z_2\\\Rightarrow z_1=z_2\Rightarrow G\mbox{ is one to one on the domain }D$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top