MHB Solve Complex Logarithm Problem on Domain D | Yahoo! Answers

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Complex Logarithm
Click For Summary
The discussion focuses on proving that the logarithmic function G(z) maps the modified domain D onto a horizontal strip in the complex plane, specifically {x + iy: x ∈ R, c < y < c + 2π}. The function G(z) is defined as G(z) = log z = log |z| + i arg z, where the argument varies continuously within the specified range. As z varies over D, the magnitude |z| spans (0, +∞), leading to log |z| covering all real numbers. The argument can be adjusted to fit within the interval (c, c + 2π), confirming that G is one-to-one on D. This establishes the desired mapping and uniqueness of G on the specified domain.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote an unsolved question from Yahoo! Answers

let D be the domain obtained by deleting the ray {x, x<=0} from the plane and let G(z) be a branch of log z on D. Show that G maps D onto a horizontal strip of width of 2pi,
{ x+iy: belong to R, c<y<c+2pi} and the mapping is one to one on D.

Thanks

I have given a link to the topic there so the OP can see my complete response.
 
Mathematics news on Phys.org
Firstly consider $G:D\to\mathbb{C}$, $G(z)=\log z=\log |z|+i\arg z$ where $\arg$ is the principal argument of $z$. When $z$ varies on $D$, $|z|$ varies on $(0,+\infty)$ hence, $\log |z|$ varies on $(-\infty,+\infty)$. When $z$ varies on $D$, $\arg z$ varies on $(-\pi,\pi)$. This implies $$G(D)=\mathbb{R}+(-\pi,\pi)i=\{x+iy:x\in\mathbb{R},y\in(-\pi,\pi)\}$$ Another continuous argument has the form $\arg_c z\in(c,c+2\pi)$, and we get the result. On the other hand, $$G(z_1)=G(z_2)\Rightarrow \log |z_1|+i\arg_c z_1=\log |z_2|+i\arg_c z_2\Rightarrow\\ \log |z_1|=\log |z_2|\;\wedge\;\arg_c z_1=\arg_c z_2\Rightarrow |z_1|=|z_2|\;\wedge\;\arg_c z_1=\arg_c z_2\\\Rightarrow z_1=z_2\Rightarrow G\mbox{ is one to one on the domain }D$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K