MHB Solve Complex Logarithm Problem on Domain D | Yahoo! Answers

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Complex Logarithm
Click For Summary
The discussion focuses on proving that the logarithmic function G(z) maps the modified domain D onto a horizontal strip in the complex plane, specifically {x + iy: x ∈ R, c < y < c + 2π}. The function G(z) is defined as G(z) = log z = log |z| + i arg z, where the argument varies continuously within the specified range. As z varies over D, the magnitude |z| spans (0, +∞), leading to log |z| covering all real numbers. The argument can be adjusted to fit within the interval (c, c + 2π), confirming that G is one-to-one on D. This establishes the desired mapping and uniqueness of G on the specified domain.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote an unsolved question from Yahoo! Answers

let D be the domain obtained by deleting the ray {x, x<=0} from the plane and let G(z) be a branch of log z on D. Show that G maps D onto a horizontal strip of width of 2pi,
{ x+iy: belong to R, c<y<c+2pi} and the mapping is one to one on D.

Thanks

I have given a link to the topic there so the OP can see my complete response.
 
Mathematics news on Phys.org
Firstly consider $G:D\to\mathbb{C}$, $G(z)=\log z=\log |z|+i\arg z$ where $\arg$ is the principal argument of $z$. When $z$ varies on $D$, $|z|$ varies on $(0,+\infty)$ hence, $\log |z|$ varies on $(-\infty,+\infty)$. When $z$ varies on $D$, $\arg z$ varies on $(-\pi,\pi)$. This implies $$G(D)=\mathbb{R}+(-\pi,\pi)i=\{x+iy:x\in\mathbb{R},y\in(-\pi,\pi)\}$$ Another continuous argument has the form $\arg_c z\in(c,c+2\pi)$, and we get the result. On the other hand, $$G(z_1)=G(z_2)\Rightarrow \log |z_1|+i\arg_c z_1=\log |z_2|+i\arg_c z_2\Rightarrow\\ \log |z_1|=\log |z_2|\;\wedge\;\arg_c z_1=\arg_c z_2\Rightarrow |z_1|=|z_2|\;\wedge\;\arg_c z_1=\arg_c z_2\\\Rightarrow z_1=z_2\Rightarrow G\mbox{ is one to one on the domain }D$$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K