Solve "Derivative Problem: Find Min & Max of (e^(-x)) - (e^(-2x))

  • Thread starter Thread starter Eshi
  • Start date Start date
  • Tags Tags
    Derivative
Eshi
Messages
27
Reaction score
0

Homework Statement


I have to find the min and max of this function using derivatives:

(e^(-x)) - (e^(-2x))




The Attempt at a Solution


f'(x) = -e^(-x) + 2x(e^(-2x))
So now i set that to zero, and I get...

2x(e^(-2x)) = e^(-x)

And at this point I have no idea what to do. If you divide e^-x by e^-2x can u do something with the exponents?
 
Physics news on Phys.org
Double check your derivative, you shouldn't be bringing an x down right? The derivative of ecx for a constant c is just cecx
 
o i ggot it! so it become

2 = e^(-x-2x)
and then you simply take the ln...

thanks jeffreydk
 
No problem.

Watch out though, I think you have a sign error in there.

f'(x)=-e-x+2e-2x=0

So then 2e-2x=e-x

and therefore by dividing you get 2=e-x+2x
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top