Solve Diff Eq Problem (s+1)/s*(s^2+s+1): Get Expert Help

  • Thread starter Thread starter bboy
  • Start date Start date
  • Tags Tags
    Diff eq
bboy
Messages
6
Reaction score
0
(s+1)/s*(s^2+s+1)
find laplace transform..
i am confused how to solve this problem
i did numerator separation and i did A/s + (Bs+c)/(s^2+s+1) but still doenst work..so experts..i do really need ur help..thnx in advance
 
Physics news on Phys.org
\frac{s+1}{s(s^2+s+1)}=\frac{1}{s}-\frac{s}{s^2+s+1}=\frac{1}{s}-\frac{s\frac{1}{2}}{\left(s+\frac{1}{2}\right)^2+\frac{3}{4}}+\frac{\frac{1}{2}}{\left(s+\frac{1}{2}\right)^2+\frac{3}{4}}=\frac{1}{s}-\frac{s+\frac{1}{2}}{\left(s+\frac{1}{2}\right)^2+\frac{3}{4}}+\frac{1}{\sqrt{3}}\cdot\frac{\frac{\sqrt{3}}{2}}{\left(s+\frac{1}{2}\right)^2+\frac{3}{4}}​

so the inverse transformation is

\mathcal{L}^{-1}\left\{\frac{s+1}{s(s^2+s+1)}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{s+\frac{1}{2}}{\left(s+\frac{1}{2}\right)^2+\frac{3}{4}}+\frac{1}{\sqrt{3}}\cdot\frac{\frac{\sqrt{3}}{2}}{\left(s+\frac{1}{2}\right)^2+\frac{3}{4}}\right\}=u(t)-u(t)e^{-\frac{1}{2}t}\cos\left(\frac{\sqrt{3}}{2}t}\right)+u(t)e^{-\frac{1}{2}t}\sin\left(\frac{\sqrt{3}}{2}t}\right)​

where u(t) is the unit step function and I got the inverse transforms from here.
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top