Precursor
- 219
- 0
Homework Statement
Solve the given symbolic initial value problem: y''-2y'-3y=2\delta (t-1)-\delta (t-3) ;y(0)=2,y'(0)=2
The attempt at a solution
Let Y(s):= L{y(t)}(s)
Taking laplace transform of both sides:
[s^{2}Y(s)-2s-2]-2[sY(s)-2]-3Y(s)=2e^{-s}-e^{-3s}
s^{2}Y(s)-2sY(s)-3Y(s)=2e^{-s}-e^{-3s}+2s-2
Y(s)=\frac{2e^{-s}-e^{-3s}+2s-2}{s^{2}-2s-3}
Y(s)=\frac{2e^{-s}}{s^{2}-2s-3}- \frac{e^{-3s}}{s^{2}-2s-3}+\frac{2s-2}{s^{2}-2s-3}
y(t)=e^{-(t-1)}\frac{1}{2}e^{-(t-1)}(e^{4(t-1)}-1)u(t-1)-e^{-(t-3)}e^{-(t-3)}(e^{4(t-3)}-1)u(t-3)+e^{-t}+e^{3t}
And my final answer:
y(t)=e^{1-t}(e^{4t-4}-1)u(t-1)-2e^{3-t}(e^{4t-12}-1)u(t-3)+e^{-t}+e^{3t}
Is this correct?
Solve the given symbolic initial value problem: y''-2y'-3y=2\delta (t-1)-\delta (t-3) ;y(0)=2,y'(0)=2
The attempt at a solution
Let Y(s):= L{y(t)}(s)
Taking laplace transform of both sides:
[s^{2}Y(s)-2s-2]-2[sY(s)-2]-3Y(s)=2e^{-s}-e^{-3s}
s^{2}Y(s)-2sY(s)-3Y(s)=2e^{-s}-e^{-3s}+2s-2
Y(s)=\frac{2e^{-s}-e^{-3s}+2s-2}{s^{2}-2s-3}
Y(s)=\frac{2e^{-s}}{s^{2}-2s-3}- \frac{e^{-3s}}{s^{2}-2s-3}+\frac{2s-2}{s^{2}-2s-3}
y(t)=e^{-(t-1)}\frac{1}{2}e^{-(t-1)}(e^{4(t-1)}-1)u(t-1)-e^{-(t-3)}e^{-(t-3)}(e^{4(t-3)}-1)u(t-3)+e^{-t}+e^{3t}
And my final answer:
y(t)=e^{1-t}(e^{4t-4}-1)u(t-1)-2e^{3-t}(e^{4t-12}-1)u(t-3)+e^{-t}+e^{3t}
Is this correct?