Solve equation Ax = y, where A and y are known

  • Thread starter Thread starter xWaffle
  • Start date Start date
xWaffle
Messages
26
Reaction score
0

Homework Statement


Solve for x: Ax = y.

A = {{2 0 1},
{1 1 4},
{2 2 1}}

y = {{1},
{1},
{1}}


Homework Equations


Basic Matrix operations
_________________________

I have a vague idea how I'm supposed to do this, but I have no attempt yet.. eigenvalues and eigenvectors come to mind..in some way :frown:
 
Physics news on Phys.org
Three possibilities come to mind:
Row reduction
Multiply by A inverse
Cramer's rule (determinants)

Try what you know.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top