MHB Solve Force Systems II: Derivatives & Reasoning Explained

  • Thread starter Thread starter Drain Brain
  • Start date Start date
  • Tags Tags
    Force Systems
Drain Brain
Messages
143
Reaction score
0
Hello! :)

Here's another problem that I want to fully understand how it was solved.

The part that I'm having a hard time with is the taking-derivatives of some equations. Why did the solver decide to take the derivative of equation 2. And why the second derivative of equation 1 became like that(encircled with red)?
It's the taking-derivatives of things I'm most confused(not the taking derivatives, but the reasoning of the solver why did he take that route.) THANKS!
 

Attachments

  • mechanicsCHII-53.jpg
    mechanicsCHII-53.jpg
    85.2 KB · Views: 112
Last edited:
Mathematics news on Phys.org
The problem is looking for the minimum [math]F_R[/math], which requires us to take a derivative. (The derivative of a function is 0 at a relative minimum point.) So we set the 1st derivative to 0. Once that is done we need to see if the value of [math]F_R[/math] given by the 1st derivative is a relative minimum or a relative maximum. The 2nd derivative test does this.

As for the second derivative:
The first derivative equation is:
[math]2F_R ~ \frac{d F_R}{d F_1} = 2F_1 - 115.69[/math]

Taking the derivative with respect to [math]F_1[/math]:
[math]2 \frac{d F_R}{d F_1} \cdot \frac{d F_R}{d F_1} + 2 F_R ~ \frac{d^2 F_R}{d F_1 ^2} = 2[/math]
Now just divide by 2.

(The derivative of the LHS is done by the product rule: [math]\frac{d}{dx} f(x)g(x) = \frac{df}{dx} g(x) + f(x) \frac{dg}{dx}[/math]. Also note that I have taken the derivative on the LHS in a different order than your source so it matches the "usual order" when using the product rule.)

-Dan
 
Hello Everyone! :)

Just want to ask how did the solution arrive at the part where it substitutes $F_{1}=57.8$(which, I suppose the critical point of the first derivative) and $\frac{d F_R}{d F_1}=0$ to the 2nd derivative.

$\displaystyle \frac{d F_R}{d F_1} \cdot \frac{d F_R}{d F_1} + F_R ~ \frac{d^2 F_R}{d F_1 ^2} = 1$ I only see $\frac{d F_R}{d F_1}$ but not $F_{1}$, where I can substitute their values.

which results in

$\frac{d^2 F_R}{d F_1 ^2}=0.00263>0$ --->>> how did it arrive here? I know what this result means, it tells us the point of minimum. But I don't understand how did that happen.

Need an Immediate help here!
 
Last edited:
Help please! Up! Up! :(
 
Drain Brain said:
Help please! Up! Up! :(
Hi Drain Brain:
In the solution notice that equation (2) gives a relation between FR and F1. Once you have F1, simply find FR using equation (2) and replace into the 2nd derivative relation.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top