eehelp150
- 235
- 0
Homework Statement
Homework Equations
The Attempt at a Solution
Nodal Equations
By property of OpAmp, V2=Vo
eq1:\frac{V_{1}-V_{in}}{R_1}+\frac{V_{1}-V_{o}}{R_2}+C_2*(\dot{V_1}-\dot{Vo})
eq2: V_1=C_1R_2\dot{V_o}+V_o
eq3:\dot{V_1}=C_1R_2\ddot{V_o}+\dot{V_o}
Sub 2 & 3 into 1
\frac{C_1R_2\dot{V_o}+V_o-V_{in}}{R_1}+\frac{C_1R_2\dot{V_o}+V_o-V_o}{R_2}+C_2(C_1R_2\ddot{V_o}+\dot{V_o}-\dot{V_o})
Simplify
\frac{C_1R_2\dot{V_o}+V_o-V_{in}}{R_1}+ C_1\dot{V_o}+C_2(C_1R_2\ddot{V_o})
\frac{C_1R_2\dot{V_o}}{R_1}+\frac{V_o}{R_1}-\frac{V_{in}}{R_1}+C_1\dot{V_o}+C_1C_2R_2\ddot{V_o}
\frac{C_1R_2\dot{V_o}}{R_1}+\frac{V_o}{R_1}+C_1\dot{V_o}+C_1C_2R_2\ddot{V_o}=\frac{V_{in}}{R_1}
Divide everything by C1C2R2 to single out Vo''
\frac{C_1R_2\dot{V_o}}{C_1C_2R_1R_2}+\frac{V_o}{C_1C_2R_1R_2}+\frac{C_1\dot{V_o}}{C_1C_2R_2}+\frac{C_1C_2R_2\ddot{V_o}}{C_1C_2R_2}=\frac{V_{in}}{R_1C_1C_2R_2}
Simplify
\frac{\dot{V_o}}{R_1C_2}+\frac{V_o}{C_1C_2R_1R_2}+\frac{\dot{V_o}}{C_2R_2}+\ddot{V_o}=\frac{V_{in}}{R_1C_1C_2R_2}
Rearrange
\ddot{V_o}+\frac{\dot{V_o}}{R_1C_2}+\frac{\dot{V_o}}{C_2R_2}+\frac{V_o}{C_1C_2R_1R_2}=\frac{V_{in}}{R_1C_1C_2R_2}<br />
This is the correct solution:
\ddot{V_o}+\frac{\dot{V_o}}{R_1R_2}+\frac{V_o}{R_1R_2C_1C_2}=\frac{V_{in}}{R_1}
What am I doing wrong?