irok
- 13
- 0
Homework Statement
Question 1:
Evaluate the indefinite integral.
\int \frac{\cos x}{2 \sin x + 6} \, dx
Question 2:
Evaluate the indefinite integral.
\int \frac{2 \; dx}{x \ln (6 x)}
NOTE: The absolute value of x has to be entered as abs(x).
The Attempt at a Solution
Question 1:
Let u = sinx, du = cosx dx
= \int \frac{1}{2 u + 6} \, du
= \frac{1}{2} \int \frac{1}{u + 3} \, du
= \frac{1}{2} \int (u + 3)^{-1} \, du
= \frac{1}{2} * [ 1 + 1 ]
= 1 + C
Question 2:
\int \frac{2 \; dx}{x \ln (6 x)}
Let u = ln(6x), du = 1 / 6x
= 12 \int \frac{1 \; du}{\ln (u)}
= 12 \int \frac{1 \; du}{\ln (u)}
= 12 \int (\ln (u))^{-1}\, du
Since inverse of ln is exp
= 12 \e^(u)
= 12 \e^(ln(6x))
= 12 * 6 x = 72 x + C