Solve xy'=x^3+(1-2x^2)y+xy^2: Solutions & Tips

  • Thread starter Thread starter Math10
  • Start date Start date
Math10
Messages
301
Reaction score
0

Homework Statement


Find all solutions of xy'=x^3+(1-2x^2)y+xy^2.

Homework Equations


None

The Attempt at a Solution


Here's my work:

xy'=x^3+y-2x^2*y+xy^2
xy'=x(x^2-2xy+y^2)+y
xy'=x(x-y)^2+y
y'=(x-y)^2+y/x
Now I'm stucked. Please help me.
 
Physics news on Phys.org
Math10 said:

Homework Statement


Find all solutions of xy'=x^3+(1-2x^2)y+xy^2.

Homework Equations


None

The Attempt at a Solution


Here's my work:

xy'=x^3+y-2x^2*y+xy^2
xy'=x(x^2-2xy+y^2)+y
xy'=x(x-y)^2+y
y'=(x-y)^2+y/x
Now I'm stucked. Please help me.

You can see from the last line that y(x) = x is one solution, although there may be others. But your rearrangement is not separable, so you are unlikely to make further progress.

The left hand side of the original is xy'. There's a y on the right, so bringing that across makes the LHS xy' - y = x^2(y/x)', so the substitution v = y/x is worth considering.
 
Good idea!

If v= y/x, then y= xv so that y'= xv'+ v. xy'=x^3+y-2x^2*y+xy^2 becomes x^2v'+ xv= x^3+ xv- 2x^3v+ x^3v^2.
 
  • Like
Likes Math10
Thank you so much for the help, Hallsoflvy.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top