Solved: Forced Vibrations Homework: Using Arctan

  • Thread starter Thread starter vanceEE
  • Start date Start date
  • Tags Tags
    Vibrations
vanceEE
Messages
109
Reaction score
2

Homework Statement



$$ M \frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F_{0}cos \omega t $$

The Attempt at a Solution


$$x(t) = asin\omega t + bcos \omega t $$
$$ a = \frac{\omega c F_{0}}{(k-\omega^2M)^2 + \omega^2c^2} $$
$$ b = \frac{(k-\omega^2M)F_{0}}{(k-\omega^2M)^2 + \omega^2c^2} $$
$$ x_{0}(t) = \frac{F_{0}}{(k-\omega^2M)^2 + \omega^2c^2} [\omega c sin \omega t + (k-\omega^2M)cos \omega t] $$

How can I use arctan to write this particular solution in a more useful form?
 
Physics news on Phys.org
LCKurtz said:

Thank's for the link, it was really helpful!

So ##[\omega sin \omega t + (k-\omega ^2 M) cos \omega t] \equiv [(Rcos\phi)cos\omega t + (Rsin\phi)sin \omega t] ## by the sum-difference formulas
Therefore,
$$\frac{F_{0}}{(k-\omega^2M)^2 + \omega^2c^2} [\omega c sin \omega t + (k-\omega^2M)cos \omega t] $$ $$\equiv \frac{F_{0} R cos (\omega t -\phi)}{R^2} $$ $$\equiv \frac{F_{0}}{√((k-\omega^2M)^2 + \omega^2c^2)} [cos \omega t - \phi] $$ where $$ \phi = \arctan (\frac{\omega}{k-\omega ^2M}) $$
Right?
 
Last edited:
You forgot a factor of ##c##. The phase angle should be
$$\phi = \arctan\left(\frac{\omega c}{k-\omega^2 M}\right).$$
 
  • Like
Likes 1 person
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top