B [SOLVED] Regarding the Superposition of Two Plane Waves

AI Thread Summary
The discussion centers on the choice of sine and cosine functions in wave superposition, specifically why the sine function is considered the oscillation part. The reasoning involves the assumption that the differences in wave numbers and frequencies are small, leading to a slower varying cosine factor compared to the sine factor. This results in the sine function oscillating with a wavelength of 2π/k, while the cosine function modulates the amplitude with a much longer wavelength of 4π/Δk. Some participants express discomfort with the professor's derivation methods, suggesting that more precise wave addition techniques exist. The conversation concludes with appreciation for the insights shared.
Slimy0233
Messages
167
Reaction score
48
1692357716134.png

My professor was teaching me about the superposition of two waves and after this derivation, he marked ##2Acos(\frac{dk}{2}x -\frac{d\omega}{2}t)## as the oscillation part and ##sin (Kx-\omega t)## as the oscillation part, I don't understand why? Any answers regarding this would be considered helpful.

My main question would be, why did he choose sin part as the oscillation and why not the cos part and more importantly, why not both? I mean, my bad intuition tells me, that I should include both.
 
Physics news on Phys.org
The answer is in the assumption that ##\mathrm{d}k \ll k## and ##\mathrm{d} \omega \ll \omega##. First, think about ##y## as function of ##x## at a fixed time. The cos-factor has a spatial period of ##4 \pi/\mathrm{d} k## and the sin-factor one of ##2 \pi/k\ll 4 \pi/\mathrm{d} k##. So the first cos factor is much slower varying than the sin factor as a function of ##x##. So you can interpret this as something oscillating in space with a wave length ##\lambda=2 \pi/k## and a position dependent amplitude, where the dependence of this amplitude on ##x## is much slower, i.e., the corresponding wave-length of these variations is ##\lambda'=4 \pi/\Delta k \gg \lambda##.

The analogous arguments hold also for the variations of the factors with time at a fixed position in space.
 
vanhees71 said:
The answer is in the assumption that ##\mathrm{d}k \ll k## and ##\mathrm{d} \omega \ll \omega##. First, think about ##y## as function of ##x## at a fixed time. The cos-factor has a spatial period of ##4 \pi/\mathrm{d} k## and the sin-factor one of ##2 \pi/k\ll 4 \pi/\mathrm{d} k##. So the first cos factor is much slower varying than the sin factor as a function of ##x##. So you can interpret this as something oscillating in space with a wave length ##\lambda=2 \pi/k## and a position dependent amplitude, where the dependence of this amplitude on ##x## is much slower, i.e., the corresponding wave-length of these variations is ##\lambda'=4 \pi/\Delta k \gg \lambda##.

The analogous arguments hold also for the variations of the factors with time at a fixed position in space.
beautiful analogy! thank you!
 
[SOLVED]
 
Slimy0233 said:
My main question would be, why did he choose sin part as the oscillation and why not the cos part and more importantly, why not both? I mean, my bad intuition tells me, that I should include both.
I am not very comfortable with the derivation. While I understand what your prof is trying to do, his/her methods seem unnecessarilly capricious. In particular exact derivations can be found for adding waves. Let's add two waves $$f(x,t)=cos(k_1x-\omega_1t)+cos(k_2x-\omega_2t) $$ then using trig identities $$ =2cos\left( \frac {(k_2-k_1)x-(\omega_2-\omega_1)t} 2 \right)cos\left( \frac {(k_2+k_1)x-(\omega_2+\omega_1)t} 2 \right)$$ $$=2f_1(x,t)f_2(x.t)$$
Typically the differences are smaller than the sums and f1 "modulates" f2. For your ear at x=0 this will give sound "beats" at the small difference frequency in the usual way.
 
  • Like
Likes Slimy0233, Ibix and vanhees71
hutchphd said:
I am not very comfortable with the derivation. While I understand what your prof is trying to do, his/her methods seem unnecessarilly capricious. In particular exact derivations can be found for adding waves. Let's add two waves $$f(x,t)=cos(k_1x-\omega_1t)+cos(k_2x-\omega_2t) $$ then using trig identities $$ =2cos\left( \frac {(k_2-k_1)x-(\omega_2-\omega_1)t} 2 \right)cos\left( \frac {(k_2+k_1)x-(\omega_2+\omega_1)t} 2 \right)$$ $$=2f_1(x,t)f_2(x.t)$$
Typically the differences are smaller than the sums and f1 "modulates" f2. For your ear at x=0 this will give sound "beats" at the small difference frequency in the usual way.
thank you for this sir!
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Hello! Let's say I have a cavity resonant at 10 GHz with a Q factor of 1000. Given the Lorentzian shape of the cavity, I can also drive the cavity at, say 100 MHz. Of course the response will be very very weak, but non-zero given that the Loretzian shape never really reaches zero. I am trying to understand how are the magnetic and electric field distributions of the field at 100 MHz relative to the ones at 10 GHz? In particular, if inside the cavity I have some structure, such as 2 plates...
Back
Top