B [SOLVED] Regarding the Superposition of Two Plane Waves

Click For Summary
The discussion centers on the choice of sine and cosine functions in wave superposition, specifically why the sine function is considered the oscillation part. The reasoning involves the assumption that the differences in wave numbers and frequencies are small, leading to a slower varying cosine factor compared to the sine factor. This results in the sine function oscillating with a wavelength of 2π/k, while the cosine function modulates the amplitude with a much longer wavelength of 4π/Δk. Some participants express discomfort with the professor's derivation methods, suggesting that more precise wave addition techniques exist. The conversation concludes with appreciation for the insights shared.
Slimy0233
Messages
167
Reaction score
48
1692357716134.png

My professor was teaching me about the superposition of two waves and after this derivation, he marked ##2Acos(\frac{dk}{2}x -\frac{d\omega}{2}t)## as the oscillation part and ##sin (Kx-\omega t)## as the oscillation part, I don't understand why? Any answers regarding this would be considered helpful.

My main question would be, why did he choose sin part as the oscillation and why not the cos part and more importantly, why not both? I mean, my bad intuition tells me, that I should include both.
 
Physics news on Phys.org
The answer is in the assumption that ##\mathrm{d}k \ll k## and ##\mathrm{d} \omega \ll \omega##. First, think about ##y## as function of ##x## at a fixed time. The cos-factor has a spatial period of ##4 \pi/\mathrm{d} k## and the sin-factor one of ##2 \pi/k\ll 4 \pi/\mathrm{d} k##. So the first cos factor is much slower varying than the sin factor as a function of ##x##. So you can interpret this as something oscillating in space with a wave length ##\lambda=2 \pi/k## and a position dependent amplitude, where the dependence of this amplitude on ##x## is much slower, i.e., the corresponding wave-length of these variations is ##\lambda'=4 \pi/\Delta k \gg \lambda##.

The analogous arguments hold also for the variations of the factors with time at a fixed position in space.
 
vanhees71 said:
The answer is in the assumption that ##\mathrm{d}k \ll k## and ##\mathrm{d} \omega \ll \omega##. First, think about ##y## as function of ##x## at a fixed time. The cos-factor has a spatial period of ##4 \pi/\mathrm{d} k## and the sin-factor one of ##2 \pi/k\ll 4 \pi/\mathrm{d} k##. So the first cos factor is much slower varying than the sin factor as a function of ##x##. So you can interpret this as something oscillating in space with a wave length ##\lambda=2 \pi/k## and a position dependent amplitude, where the dependence of this amplitude on ##x## is much slower, i.e., the corresponding wave-length of these variations is ##\lambda'=4 \pi/\Delta k \gg \lambda##.

The analogous arguments hold also for the variations of the factors with time at a fixed position in space.
beautiful analogy! thank you!
 
[SOLVED]
 
Slimy0233 said:
My main question would be, why did he choose sin part as the oscillation and why not the cos part and more importantly, why not both? I mean, my bad intuition tells me, that I should include both.
I am not very comfortable with the derivation. While I understand what your prof is trying to do, his/her methods seem unnecessarilly capricious. In particular exact derivations can be found for adding waves. Let's add two waves $$f(x,t)=cos(k_1x-\omega_1t)+cos(k_2x-\omega_2t) $$ then using trig identities $$ =2cos\left( \frac {(k_2-k_1)x-(\omega_2-\omega_1)t} 2 \right)cos\left( \frac {(k_2+k_1)x-(\omega_2+\omega_1)t} 2 \right)$$ $$=2f_1(x,t)f_2(x.t)$$
Typically the differences are smaller than the sums and f1 "modulates" f2. For your ear at x=0 this will give sound "beats" at the small difference frequency in the usual way.
 
  • Like
Likes Slimy0233, Ibix and vanhees71
hutchphd said:
I am not very comfortable with the derivation. While I understand what your prof is trying to do, his/her methods seem unnecessarilly capricious. In particular exact derivations can be found for adding waves. Let's add two waves $$f(x,t)=cos(k_1x-\omega_1t)+cos(k_2x-\omega_2t) $$ then using trig identities $$ =2cos\left( \frac {(k_2-k_1)x-(\omega_2-\omega_1)t} 2 \right)cos\left( \frac {(k_2+k_1)x-(\omega_2+\omega_1)t} 2 \right)$$ $$=2f_1(x,t)f_2(x.t)$$
Typically the differences are smaller than the sums and f1 "modulates" f2. For your ear at x=0 this will give sound "beats" at the small difference frequency in the usual way.
thank you for this sir!
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K