B [SOLVED] Regarding the Superposition of Two Plane Waves

AI Thread Summary
The discussion centers on the choice of sine and cosine functions in wave superposition, specifically why the sine function is considered the oscillation part. The reasoning involves the assumption that the differences in wave numbers and frequencies are small, leading to a slower varying cosine factor compared to the sine factor. This results in the sine function oscillating with a wavelength of 2π/k, while the cosine function modulates the amplitude with a much longer wavelength of 4π/Δk. Some participants express discomfort with the professor's derivation methods, suggesting that more precise wave addition techniques exist. The conversation concludes with appreciation for the insights shared.
Slimy0233
Messages
167
Reaction score
48
1692357716134.png

My professor was teaching me about the superposition of two waves and after this derivation, he marked ##2Acos(\frac{dk}{2}x -\frac{d\omega}{2}t)## as the oscillation part and ##sin (Kx-\omega t)## as the oscillation part, I don't understand why? Any answers regarding this would be considered helpful.

My main question would be, why did he choose sin part as the oscillation and why not the cos part and more importantly, why not both? I mean, my bad intuition tells me, that I should include both.
 
Physics news on Phys.org
The answer is in the assumption that ##\mathrm{d}k \ll k## and ##\mathrm{d} \omega \ll \omega##. First, think about ##y## as function of ##x## at a fixed time. The cos-factor has a spatial period of ##4 \pi/\mathrm{d} k## and the sin-factor one of ##2 \pi/k\ll 4 \pi/\mathrm{d} k##. So the first cos factor is much slower varying than the sin factor as a function of ##x##. So you can interpret this as something oscillating in space with a wave length ##\lambda=2 \pi/k## and a position dependent amplitude, where the dependence of this amplitude on ##x## is much slower, i.e., the corresponding wave-length of these variations is ##\lambda'=4 \pi/\Delta k \gg \lambda##.

The analogous arguments hold also for the variations of the factors with time at a fixed position in space.
 
vanhees71 said:
The answer is in the assumption that ##\mathrm{d}k \ll k## and ##\mathrm{d} \omega \ll \omega##. First, think about ##y## as function of ##x## at a fixed time. The cos-factor has a spatial period of ##4 \pi/\mathrm{d} k## and the sin-factor one of ##2 \pi/k\ll 4 \pi/\mathrm{d} k##. So the first cos factor is much slower varying than the sin factor as a function of ##x##. So you can interpret this as something oscillating in space with a wave length ##\lambda=2 \pi/k## and a position dependent amplitude, where the dependence of this amplitude on ##x## is much slower, i.e., the corresponding wave-length of these variations is ##\lambda'=4 \pi/\Delta k \gg \lambda##.

The analogous arguments hold also for the variations of the factors with time at a fixed position in space.
beautiful analogy! thank you!
 
[SOLVED]
 
Slimy0233 said:
My main question would be, why did he choose sin part as the oscillation and why not the cos part and more importantly, why not both? I mean, my bad intuition tells me, that I should include both.
I am not very comfortable with the derivation. While I understand what your prof is trying to do, his/her methods seem unnecessarilly capricious. In particular exact derivations can be found for adding waves. Let's add two waves $$f(x,t)=cos(k_1x-\omega_1t)+cos(k_2x-\omega_2t) $$ then using trig identities $$ =2cos\left( \frac {(k_2-k_1)x-(\omega_2-\omega_1)t} 2 \right)cos\left( \frac {(k_2+k_1)x-(\omega_2+\omega_1)t} 2 \right)$$ $$=2f_1(x,t)f_2(x.t)$$
Typically the differences are smaller than the sums and f1 "modulates" f2. For your ear at x=0 this will give sound "beats" at the small difference frequency in the usual way.
 
  • Like
Likes Slimy0233, Ibix and vanhees71
hutchphd said:
I am not very comfortable with the derivation. While I understand what your prof is trying to do, his/her methods seem unnecessarilly capricious. In particular exact derivations can be found for adding waves. Let's add two waves $$f(x,t)=cos(k_1x-\omega_1t)+cos(k_2x-\omega_2t) $$ then using trig identities $$ =2cos\left( \frac {(k_2-k_1)x-(\omega_2-\omega_1)t} 2 \right)cos\left( \frac {(k_2+k_1)x-(\omega_2+\omega_1)t} 2 \right)$$ $$=2f_1(x,t)f_2(x.t)$$
Typically the differences are smaller than the sums and f1 "modulates" f2. For your ear at x=0 this will give sound "beats" at the small difference frequency in the usual way.
thank you for this sir!
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top