Solving 2x(y+z)dx+(2yz-x2 +y2-z2)dy+(2yz-x2 -y2-z2)=0

  • Thread starter Thread starter Md. Abde Mannaf
  • Start date Start date
Md. Abde Mannaf
Messages
20
Reaction score
1

Homework Statement


test intelligibility and solve 2x(y+z)dx+(2yz-x2 +y2-z2)dy+(2yz-x2 -y2-z2)=0

Homework Equations

The Attempt at a Solution


14249779_1129291530479046_1835775970940401414_o.jpg


14257616_1129290913812441_4094854567129162068_o.jpg
 
Physics news on Phys.org
how to integrate after??
 
Md. Abde Mannaf said:

Homework Statement


test intelligibility and solve 2x(y+z)dx+(2yz-x2 +y2-z2)dy+(2yz-x2 -y2-z2)=0
I think the word you want is "exactness", not "intelligibility".

I'm just guessing here, but I bet you have the second term wrong. Instead of
(2yz-x2 +y2-z2)dy
did you mean
##(2yz-x^2-y^2+z^2)dy##?
 
Md. Abde Mannaf said:

Homework Statement


test intelligibility and solve 2x(y+z)dx+(2yz-x2 +y2-z2)dy+(2yz-x2 -y2-z2)=0
Judging by the workings which you included, you have a typo in your statement of the problem. It's missing dz .

2x(y+z)dx+(2yz-x2 +y2-z2)dy+(2yz-x2 -y2-z2)dz=0
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top