Solving a 0.5kg Copper Heat Transfer Problem

CatWoman
Messages
30
Reaction score
0

Homework Statement



(a) A 0.5kg mass of copper (specific heat 385 J kg-1K-1) at 600K is plunged into a litre of water at 20C. What is the equilibrium temperature, T2, of the system? What is the change in entropy of the water?
(b) A litre of water is heated slowly at a constant rate from 20C to T2. What is the change in entropy?
How do you account for the difference between (a) and (b)?


Homework Equations


not totally sure


The Attempt at a Solution



(a) ∆T_water=T_2-T_1=T_2-293 so ∆Q_water=C ∆T=〖4200 (T〗_2-293)

∆T_copper=T_2-T_1=T_2-600 so ∆Q_copper=C ∆T=〖385/2 (T〗_2-600)

Heat lost by copper is heat gained by water so ∆Q_water= ∆Q_copper so

〖4200 (T〗_2-293)=〖385/2 (T〗_2-600) => T_2=336K=63 degrees Centigrade

This is not an isothermal process so cannot use S=Q/T to calculate entropy before and after to calculate entropy difference.
Instead, use ∆S=C ln⁡〖T_2/T_1 〗 so ∆S=4200 ln⁡〖336/293=575 J K^(-1) 〗
However, if I treat it like an isothermal process, where
∆Q=4200 (336-293)=4200×43=180600 Joules
Then ∆S=∆Q/T=180600/293=616 J K^(-1)
The extra entropy gained could be because some of the water has turned to steam.

Please could somebody tell me what I am doing right, how I should calculate the entropy differently for part a and part b, and why, as I am very confused!

Many thanks :)
 
Physics news on Phys.org
Entropy is a state variable, dependent only pressure, temperature, and amount of material. I'm having a hard time seeing why the entropy change of water between 20°C and some arbitrary temperature T_2 could be path dependent, even if some quantity has boiled and recondensed.
 
Many thanks - yuor logic makes sense to me so I don't know what the question is trying to get at.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top