Solving a 3-Part Frictionless Problem

  • Thread starter Thread starter jasminwater
  • Start date Start date
  • Tags Tags
    Frictionless
AI Thread Summary
The discussion revolves around solving a three-part physics problem involving a block sliding down a frictionless track. The block, starting from rest, travels a vertical distance of 1.9 meters and leaves the track horizontally, landing 4.61 meters away. The speed of the block upon leaving the track was calculated to be 7.407 m/s, and the height from which it was released was determined to be approximately 2.7963 meters using energy conservation principles. For the total speed upon impact, the user found the total energy to be 26.2143, leading to a calculated velocity of 9.599 m/s, but there was uncertainty about accounting for friction in this calculation. The discussion highlights the importance of applying kinetic and potential energy concepts while addressing the effects of friction in the problem.
jasminwater
Messages
3
Reaction score
0
I am stuck on this 3 part problem and don't really know what to dooo, any help would be greatly appreciated =)

A block (mass 569 grams) starts at rest and slides down a frictionless track except for a small rough area on a horizontal section of the track. It leaves the track horizontally, flies through the air, and subsequently strikes the ground 4.61 m away. THe acceleration of gravity is 9.81 m/s^2. A) At what height h above the ground is the block released? B) What is the speed of the block when it leaves the track? C) What is the total speed of the block when it hits the ground?

The vertical distance between the horizontal section of the track and the ground is 1.9m. The height from where the block is released is uknown. And at the horizontal of the track there is a 1 m horizontal section where friction exists, and the coefficient of friction there is .3.


help please! thanksss =)
 
Physics news on Phys.org
Start by: Finding the speed as the block leaves the horizontal ramp. Use kinematics to find how long it would take an object to accelerate 1.9 m, distance from the track to the ground, then use that time and the distance 4.61 m to find the block's speed as it leaves the ramp. Hope that helps a lil.
 
Alright i did that, i found the speed as it leaves the track and i got : 7.407 m/s.

So to find the height... because KE = PE... then (mv^2)/2 = mgh --> h=(v^2)/2g and i got 2.7963 for my height...? is that correct?

Thats as far as I am getting, other than that i don't know how to do part c...

help again pleaaase
 
for part c, i found the total energy (KE + PE) and i got 26.2143. THen i did 26.2143 = (1/2)mv^2 and solved for v and got 9.599 m/s^2. Is that my velocity as it hits the ground? Dont i have to account for the friction?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...

Similar threads

Back
Top