Solving a 4x4 Matrix Determinant: Factor/Cofactor & Triangular Form

phantomAI
Messages
17
Reaction score
0
I seem to be still having problems with solving the determinant of a 4x4 matrix correctly. There are two methods I can use: Factor/Cofactor and reduction to triangular form.

Ex:
[ 1 2 3 4
-5 2 1 0
6 4 3 2
1 1 1 1]

determinant is 2 based on the calculator

Factor/Cofactor: I did:
1*det[2,1,0; 4,3,2; 1,1,1] - 2*det(-5,1,0;6,3,2; 1,1,1]
+ 3*det[-5,2,0; 6,4,2; 1,1,1] -4*det(-5,2,1; 6,4,3; 1,1,1]

From there I would do the individual det of the 3x3s, but when everything is added up I'm getting a determinant of 0! Did I set things up correctly like on the process of setting up the factor/cofactor method.


With the reduction to triangular form, it looks similar to Guassian elimination where I'm trying to get the matrix reduced to upper triangular form. I know that each row swap I make I need to multiply by (-1). When I'm done I mulitply the terms outside the matrix to the diagonals. However, I'm still a bit confused, so can anyone explain it a bit better than my textbook?

Thanks.
 
Physics news on Phys.org
From there I would do the individual det of the 3x3s, but when everything is added up I'm getting a determinant of 0!

Which happens to be the correct value... What makes you think a matrix can't have a determinant of 0?
 
DOH! I shouldn't always rely on the calculator (or at least me inputting wrong values)


Yeah the Det is 0.

I still have some trouble with the Triangular form method though. This technique is suppose to be quicker than the Factor/Cofactor technique right?
 
Yes, a lot quicker. Learn it, it's very useful
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top