Solving a certain equation involving logarithms

  • Thread starter Thread starter bitrex
  • Start date Start date
  • Tags Tags
    Logarithms
bitrex
Messages
190
Reaction score
0
I'm reading book called "Prime Obession" which attempts to give a layperson's introduction to the Riemann Hypothesis. In laying the groundwork in one of the early chapters the author is explaining the fact that the function log(x) increases more slowly in total than x raised to any power. For example, log(x) crosses the function x^0.1 somewhere less than e^e, and then falls below it again somewhere in the quadrillions. I'm wondering how one would go about solving the equation to find the Y axis intercepts? I want to find where log(x) = x^0.1, in trying to simplify the problem I end up with log(x)/x = e^0.1, but I'm not able to go any farther. The equation obviously has two solutions, so I imagine there's a polynomial involved somewhere? Any advice would be appreciated.
 
Mathematics news on Phys.org
bitrex said:
For example, log(x) crosses the function x^0.1 somewhere less than e^e, and then falls below it again somewhere in the quadrillions. I'm wondering how one would go about solving the equation to find the Y axis intercepts? I want to find where log(x) = x^0.1, in trying to simplify the problem I end up with log(x)/x = e^0.1, but I'm not able to go any farther. The equation obviously has two solutions, so I imagine there's a polynomial involved somewhere? Any advice would be appreciated.

log(x)/x = e^0.1 is not the same as log(x) = x^0.1.

Generally, equations like this have no easy solutions (though they can be solved in terms of a special function called Lambert's W). The best way is probably by numerical methods:

Code:
gp> solve(x=1,9,log(x)-x^.1)
time = 0 ms.
%1 = 3.0597266796208088546065494702258610157
gp> solve(x=1e15,1e16,log(x)-x^.1)
time = 0 ms.
%2 = 3430631121407801.2027753365093892641824
 
Yes, you're right. I made a mistake in playing around with the equation: log(x^0.1) != log(x)^0.1 . I considered that numerical methods would probably be a way to solve it; I just wasn't sure if there were some trick that I was missing. Thanks so much for your speedy reply!
 
This is equivalent to the idea that any function f(x)=a^x for all values a>1 will rise faster than any polynomial of nth degree such as g(x)=x^n n very large.
 
log(x) = x^(0.1)
exact solution is not possible in terms of your standard schoolbook functions
modern CASs like Maple will solve this using the Lambert W function...

x = 10000000000 (W(-0.1))10
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top